
90-726 Section A

January, 1997

Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

Java

Lecture Three: Object Oriented
Design and Development

Manu Kumar
(sneaker@sneaker.org)

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

2

90-726 Section A

Java Object Oriented?

u Object Oriented seems to be the buzzword for the 90s
– But what is it?
– What does it really do?
– And is it worth it?

u In this session we will
– talk about the basics of OO concepts
– evaluate some of the advantages and disadvantages of using

OO
– take an in-depth tour of how Java exploits OO concepts in its

design
– Put on your Object Oriented seat-belts and lets get started…

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

3

90-726 Section A

Java Objects

u Any entity which mirrors the existence of a real world
entity is an Object
– Examples of Objects:

t Person, Student, Chair, Desk
– essentially any entity that exists in real-life and can be mirrored

in a software system is an object

u Objects contain
– attributes (variables)
– functionality (methods)

u Object can have some properties or be acted upon
t example:

– a person has a name and social security number
– a chair can be sat on, a desk can be lifted

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

4

90-726 Section A

Java Classes

u A description of an Object is called a class
– For example

t A Person is a class which may have attributes
– name
– social security number

t and may have functionality
– eat
– walk

u But in the previous slide we said a person was an
object!?
– In English a “person” can be an object
– But objects in Computer Science are a specific occurrence

(instance) of a class

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

5

90-726 Section A

Java Objects vs. Classes

u Person is a class
– it has attributes
– it has funtionality

u “Bart” is an Object of type Person
– Bart has attributes:

t name = Bart
t ssn = 123-45-6789

– Bart has functionality
t eat - Bart eats only spaghetti
t walk - Bart only walks to class

u Similarly “Lisa” is an instance of Person
– name = Lisa, ssn = 012-34-5678,
– eat - Lisa eats chocolates

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

6

90-726 Section A

Java Variables & Methods

u Attributes are stored as Variables
– In our previous example name and ssn were the two variables

u Functionailty is stored in Methods
– In our previous example eat and walk were methods

u Another example:
– Class Shape

t variable: color, method: computeArea
– Object Circle

t color = red, computeArea = πr2

– Oject Rectangle
t color = blue, computeArea = w*h

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

7

90-726 Section A

Java OO Buzzwords

u If you claim to know OO programming you should be
able to define
– Encapsulation
– Inheritance
– Polymorphism

u Encapsulation
– Notice what what happened in our previous example

t Our Object Bart had some attributes and some functionality. but all
we need to know about Bart is that Bart is a Person

t the information about Bart’s name, his SSN and the fact that he
can eat and walk (implementation) are hidden from us

t The Person class could also define another variable called “secret”
as an attribute, which need not ever be exposed to the outside
world.

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

8

90-726 Section A

Java OO Buzzwords: Inheritance

u Inheritance
– allows one Class to automatically “assume” the attributes of

another class
– defines an “is a” relationship for classes

u When you think of inheritance, think genetics
– you have “inherited” some characteristics and behavior from

your parents
t characteristics are “variables”
t behavior is “methods”

– However at the same time you are an individual
t you’ve developed your own characteristics and behaviors

– modified your parent’s
– added your own

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

9

90-726 Section A

Java OO Buzzwords: Inheritance

u Example
– Class Person

t variables: name, ssn
t methods: eat, walk

– Class Student inherits from (extends) Person
t added variables: courses, grades, gpa
t added methods: study, party
t modified methods: walk

– the implementation for walk may be replaced by running instead of
walking

– Bart is a Student, but Bart is ALSO a Person
– Student is a subclass of Person
– Person is the superclass of Student

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

10

90-726 Section A

Java OO Buzzwords: Polymorphism

u Polymorphism
– the ability to do different things when called on different objects

u Example:
– Class Shape

t variable: color
t method: area

– Class Circle inherits from Shape
t modifies (overrides) area to return πr2

– Class Rectangle inherits from Shape
t modifies (overrides) area to return w*h

– Object c is a Circle, but is also a Shape
– Object r is a Rectangle, but is also a Shape

t any call of the type shape.area will use the most restrictive method!

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

11

90-726 Section A

Java OO Buzzwords: Polymorphism

u Example continued
– c.area will call Circle’s method
– r.area will call Rectangle’s method

u More formally:
– Polymorphism enables an object to send the same message to

different receivers (Objects) without knowing how the receiver
(Object) will implement the message.

u Do not confuse with same method with different
parameter types
– Class Student

t method: eat (Pizza pizza)
t method eat (NotPizza notPizza)

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

12

90-726 Section A

Java Invoking methods

u Methods are invoked by
– objectName.methodName(parameter1, parameter2...)

t objectName is an instance of a particular class
t bart.eat(pizza)

u However!
– Some times it makes sense to have a method on the “Class”

rather than on the “Object”
t these are called static methods
t Static methods apply to the className

– className.methodName(parameter1, parameter2…)

t Static methods are used for functionality which applies to the type
of the object rather than each instance of the object.

t Static methods are useful since they can be called without
instantiating an object of the class.

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

13

90-726 Section A

Java OO Design (1)

u Why design software?
– Why do you design a building on paper before building it in

concrete?
t To make sure it won’t come crumbling down!
t To make sure the doors and windows fit and are the right size

– Software which is designed has a much better chance of
working right…

u What is OO Design?
– OO Design is one of the most popular design methodologies for

software
– In OO design, you start by analyzing the real-world entities

which exist in the environment
– then add in the attributes and behavior for each of those entities

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

14

90-726 Section A

Java OO Design (2)

u Steps in OO design
– Map real-world entities into Classes and Objects
– Establish relationships between classes

t Student inherits from person
– Analyze all actions one object can perform on another object

t create methods for these actions
– Build wrapper around the objects to make hem interact

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

15

90-726 Section A

Java Java and OO Concepts

u Everything in Java is a class
– you are dealing with classes and objects
– variables and methods
– encapsulation, inheritance and polymorphism

u Especially when we get to writing applets and GUIs
u Java allows you to use OO concepts

– you can still write spaghetti code in Java
– but you will learn how to truly exploit the power of OO with

experience

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

16

90-726 Section A

Java Java Packages

u A collection of related classes in Java can be bundled
together in Packages

u For example
– java.net contains all network related classes
– java.awt contains all AWT (GUI) related classes
– java.io contains all input output related classes

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

17

90-726 Section A

Java Information Hiding in Java

u Java provides three levels of information hiding
– public
– protected
– private

u Classes, variables and methods can all be preceded by
one of the above keywords

u Public:
– visible to ALL

u Protected:
– visible to only the subclasses and classes within this package

u Private:
– visible only to this class

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

18

90-726 Section A

Java An Idiom explained

u Remember this
– public static void main(String args)

u first, it does not make sense to have every “object” have
a main method
– therefore it is defined as static

u the method is public so that it can be called from outside
this class and outside this package

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

19

90-726 Section A

Java So far in this lecture

u We have had a very cursory overview of OO principles
u In the next lecture we will

– go hands on and do some OO design
– do some OO development in class

u Any suggestions on a programming problem that you
would like to see addressed?
– send email

January, 97 Copyright © 1998, Manu Kumar
(sneaker@sneaker.org)

20

90-726 Section A

Java Status update

u Assignment #1 is due soon
– bring print out to class

u Quiz #2 will be simple
– and cover some topics discussed in class today and some

things from the readings
– 10-15 minutes

u No more scheduled Quizzes
– you should have enough fundamentals to move further

u Assignment #2 will be announced

