
CS193j, Stanford Handout #29
Summer, 2002-03 Manu Kumar

Advanced Java
A tour of a few advanced Java features added in Java 1.4...

Regular Expressions
Added in Java 1.4
http://developer.java.sun.com/developer/technicalArticles/releases/1.4regex/

Pattern
Represents a regular expression pattern
Supports Perl-style regular expressions: \w+ \s [^a-z0-9]* etc. etc.
Need to use double \\ in strings to get a single \: e.g. "\\s" translates to \s sent to the

regular expression engine.

Matcher
Create a matcher out of a pattern and some text
The matcher can search for the pattern in the text
find() searches for an occurrence of the pattern, searching from a point after the previous

find()
group() returns the matched text from the previous find
Matcher supports many other ways to look and iterate with the pattern on the text.

 import java.util.regex.*;
 ...
 // Extract email addrs from text
 // email addr is @ surrounded by \w.-_
 // We need to use double \\ in the " string, to put a single \ in the pattern
 // (\w represents a 'word' character: a-zA-Z and _
 String text = "blah blah, nick@cs, binky binky foo@bar.com; spam_me@foo.edu ";
 String re = "[\\w\\.\\-]+\\@[\\w\\.\\-]+";
 Pattern pattern = Pattern.compile(re);

 // Create a matcher on the string
 Matcher matcher = pattern.matcher(text);

 // find() will iterate through matches in the text
 while (matcher.find()) {
 // group() returns the most recently matched text
 System.out.println("email:" + matcher.group());
 }
 /*
 Output
 email:nick@cs
 email:foo@bar.com
 email:spam_me@foo.edu
 */

 2

pattern.split()
Use a pattern to split up a string -- extract the strings separated by the pattern (like the

split function in Perl)

 // Use split() to extract parts of a string
 String text2 = "Hello, what's with all the punctuation, and stuff here; I
want just the words.";
 // The pattern matches one or more adjacent whitespace or punctuation chars
 Pattern splitter = Pattern.compile("[\\s,.;]+");

 // Split() uses the pattern as a separator, returns all the other strings:
 // "Hello" "what's" "with" ...
 String[] words = splitter.split(text2);
 for (int i=0; i<words.length; i++) {
 System.out.println(words[i]);
 }

Static Pattern.match() convenient method
Static convenience method
Builds a pattern and matcher, and runs the matches() method against the given text.
Returns true if the _entire text_ matches the pattern.
Less efficient, since the pattern and matcher are built, used once, and discarded.
Handy for simple little cases where the client doesn't want the bother of creating the

pattern and matcher objects. Good client oriented design -- the simple, common case is
very easy to code.

boolean found = Pattern.matches("\\w+\\s\\w+", "hello there");
System.out.println(found); // true

 3

Assert
Added in Java 1.4
Off by default at runtime
Assert code is essentially deleted at runtime by the JVM
Therefore, never include code that must execute in an assert (example below)
Turn on and off with the -ea/-da command line switches to java

class Assert {
 /*
 Use assertions to sprinkle code with tests of what should be true.
 The assertion throws an AssertionError exception if the test is false.
 -help document what you think is going on, say, at the top
 of each loop iteration
 -help find bugs more quickly in this code, and in client code that
 calls this code.

 The assert code may be deleted by the JVM at runtime, so do not put
 code that must execute in the assert. Assert should do read-only tests.

 To compile with asserts, use the '-source 1.4' to javac. If you compile this
 way, the code will only work on a 1.4 or later JVM.
 By default at runtime, assert is not enabled -- they are NOPs
 Turn asserts on with the -enableassertions switch to the 'java' command
 (-ea is the shorthand)
 java -ea // turns on asserts for the whole program
 java -ea MyClass // turns on asserts for just that class
 java -ea -da MyClass // turn on asserts, but turn them off for MyClass
 */
 public static void main(String[] args) {

 int len=1;

 // assert a condition that should be true
 assert len<100;

 // Can include a : <string> after the assert that goes in the error printout
 assert len<1 : "len=" + len;

 /*
 Output:
 Exception in thread "main" java.lang.AssertionError: len=1
 at Assert.main(Advanced.java:80)
 */

 // Suppose your code calls foo(), and it returns 0 on success

 // Never do this:
 // assert foo()==0;
 // Do it this way, so it still works if the assert is disabled
 // int result = foo();
 // assert result==0;
 }

}

	A tour of a few advanced Java features added in Java 1.4...
	Regular Expressions
	Added in Java 1.4
	http://developer.java.sun.com/developer/technicalArticles/releases/1.4regex/

	Pattern
	Represents a regular expression pattern
	Supports Perl-style regular expressions: \w+ \s [^a-z0-9]* etc. etc.
	Need to use double \\ in strings to get a single \: e.g. "\\s" translates to \s sent to the regular expression engine.

	Matcher
	Create a matcher out of a pattern and some text
	The matcher can search for the pattern in the text
	find() searches for an occurrence of the pattern, searching from a point after the previous find()
	group() returns the matched text from the previous find
	Matcher supports many other ways to look and iterate with the pattern on the text.

	pattern.split()
	Use a pattern to split up a string -- extract the strings separated by the pattern (like the split function in Perl)

	Static Pattern.match() convenient method
	Static convenience method
	Builds a pattern and matcher, and runs the matches() method against the given text.
	Returns true if the _entire text_ matches the pattern.
	Less efficient, since the pattern and matcher are built, used once, and discarded.
	Handy for simple little cases where the client doesn't want the bother of creating the pattern and matcher objects. Good client oriented design -- the simple, common case is very easy to code.

	Assert
	Added in Java 1.4
	Off by default at runtime
	Assert code is essentially deleted at runtime by the JVM
	Therefore, never include code that must execute in an assert (example below)
	Turn on and off with the -ea/-da command line switches to java

