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Java Implementation and 
Performance 

Java Compiler Structure 
Compile classes in .java files -- produce bytecode in .class files 

Bytecode 
A compiled class stored  in a .class files or a .jar file 
Represent a computation in a portable way -- as PDF is to an image 

Java Virtual Machine 
The Java Virtual Machine (JVM) is an abstract stack machine -- the bytecode is written 

to run on the JVM 
The JVM is also the name of the (written in C) program that loads and runs the bytecode. 

The JVM interprets the bytecode to "run" the program. 
The JVM runs the code with the various robustness/safety checks in place -- robustness 

vs. performance tradeoff. 

Verifier 
The JVM also has a "verifier" that checks that the bytecode is well-formed (e.g. an int is 

never directly used as a pointer, ...). This is a step in making Java virus proof. 
A bad guy can try to feed a "bad" program to the JVM, but the verifier will catch in 

places where the program tries to get around the runtime type, array, etc. checks. 
Usually, you don't see verifier errors, since the compiler will only generate "correct" 

bytecode, but the verifier is still needed, in case a bad guy hand crafts some bad 
bytecode. 

ByteCode Example 
You can use the "javap" command to print out the bytecode for a class. Normally it prints 

a summary. The -c switch causes it to print the actual bytecode. 

Bytecode Strategy 
The bytecode is just a description of the computation that does not have a particular limit 

on the number of registers. 
HotSpot can translate the bytecode into real register machine code for the particular 

architecture. 
The Bytecode is structured to be portable, and so the verifier can work. 
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Bytecode Primer 
The byte code executes against a stack machine -- adding 1 + 2 like this 

iload 1;  // push a 1 onto the stack 
iload 2;  // push a 2 onto the stack 
add;  // add the two numbers on the stack 
   // leaving the answer on the stack 

"load" means push a value onto the stack 
aload_0 = push address of slot 0 -- slot 0 is the "this" pointer 
iload_1 = push an int from slot 1 (a parameter) 
getfield -- using the pointer on the stack, load an ivar 
putfield -- as above, but store to the ivar 

Student Bytecode 
nick% javap -c Student 
Compiled from Student.java 
public class Student extends java.lang.Object { 
    protected int units; 
    public static final int MAX_UNITS; 
    public static final int DEFAULT_UNITS; 
    public Student(int); 
    public Student(); 
    public int getUnits(); 
    public void setUnits(int); 
    public int getStress(); 
    public boolean dropClass(int); 
    public static void main(java.lang.String[]); 
} 
 
<snip> 
 
Method int getUnits() 
   0 aload_0 
   1 getfield #20 <Field int units> 
   4 ireturn 
 
Method void setUnits(int) 
   0 iload_1 
   1 iflt 10 
   4 iload_1 
   5 bipush 20 
   7 if_icmple 11 
  10 return 
  11 aload_0 
  12 iload_1 
  13 putfield #20 <Field int units> 
  16 return 
 
Method int getStress() 
   0 aload_0 
   1 getfield #20 <Field int units> 
   4 bipush 10 
   6 imul 
   7 ireturn 
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JITs and Hotspot 
Just In Time compiler -- the JVM may compile the bytecode to native code at runtime 

(with the robustness checks still in). (This is one reason why java programs have slow 
startup times.) 

The "hotspot" project tries to do a sophisticated job of which parts of the program to 
compile. In some cases, hotspot can do a better job of optimization than a C++ 
compiler, since hotpsot is playing with the code at runtime and so has more 
information. 

Future 
Maybe cache the compiled version, to speed class loading 
Think of bytecode as a distribution format, while at runtime something more native is 

happening. 
 

Optimization 
Optimization Quotes 
 
       Rules of Optimization: 
       Rule 1: Don't do it. 
       Rule 2 (for experts only): Don't do it yet. 
       - M.A. Jackson 
 
       "More computing sins are committed in the name of efficiency (without necessarily 

achieving it) than for any other single reason - including blind stupidity." - W.A. Wulf 
 
 
       "We should forget about small efficiencies, say about 97% of the time: premature 

optimization is the root of all evil." - Donald Knuth 

Optimization 101 
Reality 

Hard to predict where the bottlenecks are 
It's not so hard to use tools to measure what the code is doing once it is written. 
Therefore, write the code you way you want to be correct and finished first, then 

worry about optimization. 
"Premature Optimization" = evil 

Classic advice from Don Knuth 
Write the code to be straightforward and correct first 
Maybe it's fast enough already 
If not, measure to find the bottleneck 
Focus optimization there. Use CS161 type optimal algorithms + use language 

techniques as below 
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Data Structures 
Your data structure will have a profound influence on performance. 
This is one bit of "early" design where you might want to think about performance a 

little. 
The choice of data structure (what you store, who has pointers to whom) can be very 

constraining on the possible algorithms later on. 
Proportionality To Caller 

Suppose we write a foo() utility in a way which is easy to code but naive -- it 
currently costs 1 millisecond, but could be sped up drastically. foo() is only called 
in one place by the bar() method. (If foo() is called multiple times, just add them all 
up to get the total foo() cost.) 

How do you know if this matters? 
The key question: how costly is bar()? If bar() takes 20 milliseconds, then foo() just 

doesn't matter. The smart strategy is to leave foo() in it's slow/naive/correct 
implementation -- find something else to fix. 

If bar() takes 2 milliseconds, then foo() makes a huge difference and should be fixed. 
1-1 User Event Rule 

If something happens some fixed number of times like 1 or 3, for each single user 
event, such as a button push, then performance is not too important for that 
operation. 

Watch for operations that happen 100's or thousands of times in relation to each user 
event. 

User events happen very slowly from the computer's point of view. 
e.g. use reflection to do a single method lookup when a button is pressed. Reflection 

is slow, but the true bottleneck will certainly be some other operation that happens 
many times per press. 

Java Tips 
Using the right data structure and algorithm is the most important. After that we have 

language feature rules... 

1. 1-10-100 Rule 
assignment (=) : 1 unit of time 
method call : 10 units of time 

similar overhead to C 
new object or array : 100 units of time 
In reality, it is very hard to say what the cost of "new" is -- it depends on how expensive 

the object ctor is and how long lived the object is and how much burden it adds to the 
GC system over the object's lifetime. 

This has also been known as the 1-10-1000 rule, but modern GC has improved so much 
that 1-10-100 is probably closer. In any case, you should think of "new" as being rather 
expensive. 

With modern GC systems, it's probably a bad idea to try to maintain your own large 
"free" list of objects for re-use. If the list is large, it interferes with GC doing its job. 
Techniques that were speedups with old GC systems are no longer speedups. 
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2. int getWidth() vs. 
Dimension getSize() 
getSize() requires a heap allocated object 
getWidth() and getHeight() may just be inlined to move the two ints right into the local 

vars of the caller code. 
With HotSpot, short lived objects are a case where the new GC dos very well, so this is 

less of a concern than it once was. 

3. Locals Faster Than iVars 
Local (stack) variables are faster than member variables of any object (the receiver or 

some other object). Locals are also easier for the optimizer to work with for a variety of 
optimizations. 

A .width variable in this object or in some other object pointer is slower than a local stack 
variable. 

Inside loops, pull needed values into local variables (int i;). 
Suppose we are in a for loop... 
1. Slow -- message send 

...i < piece.getWidth() 
2. Medium -- instance variable -- with a good JIT, this case and (1) above are essentially 

the same. 
...i < piece.width 
-or- 
...i< width  (suppose the code is executing against the receiver) 

3. Fast -- pull the state into a local (stack) variable, and then use it. This makes it easier 
for the JIT to pull the value into a native register. If the value is in an ivar, the runtime 
may need to retrieve it from memory every time it is used. It's hard for the runtime to 
deduce that .width is not being changed, so it reloads it from memory. Whereas it's easy 
for it to deduce that localWidth is not being changed, so it can just put it in a register 
and use that value the whole time. (Note theme for the future: we're sensitive to 
generating memory traffic.) 

int localWidth = piece.getWidth(); // or width if we are the receiver 
... i<localWidth... 
 
-or- 
 
// make it even more clear for the JIT... 
final int localWidth = piece.getWidth(); 

4. Avoid Synchronized (Vector) 
Synchronized has a moderate runtime cost -- although this has been greatly reduced as of 

Java 1.3 
Can have synch and unsynch versions of the same method, and switch between the two 

based on some other flag. 
Use "immutable" (unchangeable) objects to finesse synchronization problems. 
As usual, this matters if... 
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The routine is called many times 
What the routine does is cheap, so the synch overhead is significant 

The old Vector class is synchronized for everything, which is often a needless cost. Use 
the new Collections ArrayList instead. 

If you can get away with a plain array, even better -- that's the fastest 

5. StringBuffer 
Use StringBuffer for multiple append operations -- change to String only once it's not 

going to change. 
Automatic 

This case the compiler optimizes for you -- appending together a bunch of strings at 
one moment into one immutable string. 

String s = "a string" + foo.toString() + "some other string"; 
 

No 
String record;  // ivar 
 
void transaction(String id) { 
 record = record + " " + id;  // NO, chews through memory 
} 
 

YES 
StringBuffer record; 
void transaction(String id) { 
 record.append(" "); 
 record.append(id); + id; 
} 
 

6 Don't Parse 
Obvious but slow strategy: read in XML, ASCII, etc. -- build big data structure 
Fast: read it into memory, but leave it as just chars. Do the search, etc. in the chars -- just 

parse/build the sub-part you need on the fly. 

7. Avoid Weird Code 
The whole suite of JVM optimizations added over time will be oriented towards common 

looking code -- write your code in the most obvious, common way, not some weird 
way. Ironically, weird code often gets written in the pursuit of optimization. 

e.g. the write obvious form: for (int i = 0; i<bound; i++) {...} 
Also, realize that obvious method implementations like getWidth() {return(width);} will 

certainly be targeted by HotSpot, so don't worry about the method overhead. 

8. Threading / GUI Threading 
Use separate threads so the GUI remains responsive. This "feels" fast. (snappy). This is 

always a good idea -- java makes it pretty easy to do right. 
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Divide the problem in to sub-problems that can be performed by multiple threads 
simultaneously -- a performance win on multiple processors. 

Pro: in the future of parallel hardware, this may be the best way to get more 
performance. 

Con: the software is harder to write, and the bugs can be subtle 
Con: the locking/unlocking imposes a cost, so the parallel speedup needs to be great 

enough to cover that extra cost. 
This may be the performance technique of the future -- explicit parallelism in the 

software 

9. Inlining Methods/Classes 
JVM optimizers, and hot spot in particular, make aggressive use of inlining  -- pasting  

called code into the caller code. 
Inlining enables many other optimizations. 
The "final" keyword for a class means it will not be subclassed, and a "final" method will 

not be overriden. 
These assumptions can help HotSpot figure out message-method mappings before they 

happen. 
As Hotspot gets smarter, it can figure things out even without "final". 

Not Inlined 

�

A() {

B() {

C() {

 

Inlined 
A() {
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Advantages 
Data Flow 

Values in A() are passed to parameters in B(), passed to C(), where they are used. 
Now, the flow of that value through the whole A/B/C sequence can be analyzed -- the 

value can just live in one variable/register for the whole computation 
This saves on memory traffic, which is just what we need 

Propagation of analysis 
Suppose A() is running a for(i=0; i<array.len; i++) loop, and calls B() and C(). 
Down in the C() code, a statemene like array[i] would need to be checked for i<0 and 

i>=len normally. 
But now Hotspot can see the value of i from start to finish, show that it's always in 

range, and so remove the cost if the aray-bounds check. 
Similar optimizations work for example: checking if pointers are null, checking 

instanceof on a pointer. 

10. Think About Memory Traffic 
Old: CPU bound 

Think about how many operations you do. 
New: Memory bound 

CPU operations are getting cheaper all the time as the CPU gets faster than the 
memory system. 

Think about how much "traffic" your algorithm must read and write. Once it's in the 
cache, it's cheap, so reading the same things multiple times is cheap. Reading 
consecutive addresses is also cheap. 

Cache 
All access is through the cache hierarchy, so reading or writing the 4 bytes at at 

address x, actually loads 16 bytes or so around that address. This is why touching 
consecutive memory locations is cheap. 

Linked List Example 
What is the cost of iterating through all the elements of a linked list? 
Need to load each linked list element: data + next field 
Bad: the next field itself is just added overhead 
Bad: the next linked list element will somewhere else in memory. Cache systems do best 

when you accessing contiguous stretches of memory. 

LinkedList vs. ChunkList 
Imagine a ChunkList implementation where each linked list element contains a small 

array of elements. 
The ChunkList is faster, purely because it makes better use of cache lines. 
The linked list probably gets just one client element per cache line loaded. 
Because the ChunkList stores the client elements adjacent to each other, it is able to load 

several all in one cache line. 
The point: think of an algorithm in terms of the memory touch pattern of an algorithm. 

The unit of cost is the number of cache lines pulled in from main memory. 
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Array of Objects 
Suppose you have an array of objects, with ivars x, y, and z. in each object. 
What is the cost of adding up all the y's -- think in terms of cache lines. 
Suppose we re-organize the data into 3 "parallel" arrays -- one of all the x's, one of all the 

y's, and one of all the z's -- now what is the cost? 
The parallel arrays design is not OOP, and  it's just generally bad, but it could be a lot 

faster -- a technique to have in mind if you're truly desparate. NEVER do something 
like this for the original design -- fall back to it in desperation. 
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	Your data structure will have a profound influence on performance.
	This is one bit of "early" design where you might want to think about performance a little.
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	Java Tips
	Using the right data structure and algorithm is the most important. After that we have language feature rules...

	1. 1-10-100 Rule
	assignment (=) : 1 unit of time
	method call : 10 units of time
	similar overhead to C

	new object or array : 100 units of time
	In reality, it is very hard to say what the cost of "new" is -- it depends on how expensive the object ctor is and how long lived the object is and how much burden it adds to the GC system over the object's lifetime.
	This has also been known as the 1-10-1000 rule, but modern GC has improved so much that 1-10-100 is probably closer. In any case, you should think of "new" as being rather expensive.
	With modern GC systems, it's probably a bad idea to try to maintain your own large "free" list of objects for re-use. If the list is large, it interferes with GC doing its job. Techniques that were speedups with old GC systems are no longer speedups.

	2. int getWidth() vs.�Dimension getSize()
	getSize() requires a heap allocated object
	getWidth() and getHeight() may just be inlined to move the two ints right into the local vars of the caller code.
	With HotSpot, short lived objects are a case where the new GC dos very well, so this is less of a concern than it once was.

	3. Locals Faster Than iVars
	Local (stack) variables are faster than member variables of any object (the receiver or some other object). Locals are also easier for the optimizer to work with for a variety of optimizations.
	A .width variable in this object or in some other object pointer is slower than a local stack variable.
	Inside loops, pull needed values into local variables (int i;).
	Suppose we are in a for loop...
	1. Slow -- message send
	...i < piece.getWidth()

	2. Medium -- instance variable -- with a good JIT, this case and (1) above are essentially the same.
	...i < piece.width
	-or-
	...i< width  (suppose the code is executing against the receiver)

	3. Fast -- pull the state into a local (stack) variable, and then use it. This makes it easier for the JIT to pull the value into a native register. If the value is in an ivar, the runtime may need to retrieve it from memory every time it is used. It's
	int localWidth = piece.getWidth(); // or width if we are the receiver
	... i<localWidth...
	-or-
	// make it even more clear for the JIT...
	final int localWidth = piece.getWidth();


	4. Avoid Synchronized (Vector)
	Synchronized has a moderate runtime cost -- although this has been greatly reduced as of Java 1.3
	Can have synch and unsynch versions of the same method, and switch between the two based on some other flag.
	Use "immutable" (unchangeable) objects to finesse synchronization problems.
	As usual, this matters if...
	The routine is called many times
	What the routine does is cheap, so the synch overhead is significant

	The old Vector class is synchronized for everything, which is often a needless cost. Use the new Collections ArrayList instead.
	If you can get away with a plain array, even better -- that's the fastest

	5. StringBuffer
	Use StringBuffer for multiple append operations -- change to String only once it's not going to change.
	Automatic
	This case the compiler optimizes for you -- appending together a bunch of strings at one moment into one immutable string.
	String s = "a string" + foo.toString() + "some other string";

	No
	String record;// ivar
	void transaction(String id) {
	record = record + " " + id;// NO, chews through memory
	}

	YES
	StringBuffer record;
	void transaction(String id) {
	record.append(" ");
	record.append(id); + id;
	}


	6 Don't Parse
	Obvious but slow strategy: read in XML, ASCII, etc. -- build big data structure
	Fast: read it into memory, but leave it as just chars. Do the search, etc. in the chars -- just parse/build the sub-part you need on the fly.

	7. Avoid Weird Code
	The whole suite of JVM optimizations added over time will be oriented towards common looking code -- write your code in the most obvious, common way, not some weird way. Ironically, weird code often gets written in the pursuit of optimization.
	e.g. the write obvious form: for (int i = 0; i<bound; i++) {...}

	Also, realize that obvious method implementations like getWidth() {return(width);} will certainly be targeted by HotSpot, so don't worry about the method overhead.

	8. Threading / GUI Threading
	Use separate threads so the GUI remains responsive. This "feels" fast. (snappy). This is always a good idea -- java makes it pretty easy to do right.
	Divide the problem in to sub-problems that can be performed by multiple threads simultaneously -- a performance win on multiple processors.
	Pro: in the future of parallel hardware, this may be the best way to get more performance.
	Con: the software is harder to write, and the bugs can be subtle
	Con: the locking/unlocking imposes a cost, so the parallel speedup needs to be great enough to cover that extra cost.
	This may be the performance technique of the future -- explicit parallelism in the software


	9. Inlining Methods/Classes
	JVM optimizers, and hot spot in particular, make aggressive use of inlining  -- pasting  called code into the caller code.
	Inlining enables many other optimizations.
	The "final" keyword for a class means it will not be subclassed, and a "final" method will not be overriden.
	These assumptions can help HotSpot figure out message-method mappings before they happen.
	As Hotspot gets smarter, it can figure things out even without "final".

	Not Inlined
	
	˛�


	Inlined
	
	�


	Advantages
	Data Flow
	Values in A() are passed to parameters in B(), passed to C(), where they are used.
	Now, the flow of that value through the whole A/B/C sequence can be analyzed -- the value can just live in one variable/register for the whole computation
	This saves on memory traffic, which is just what we need

	Propagation of analysis
	Suppose A() is running a for(i=0; i<array.len; i++) loop, and calls B() and C().
	Down in the C() code, a statemene like array[i] would need to be checked for i<0 and i>=len normally.
	But now Hotspot can see the value of i from start to finish, show that it's always in range, and so remove the cost if the aray-bounds check.
	Similar optimizations work for example: checking if pointers are null, checking instanceof on a pointer.


	10. Think About Memory Traffic
	Old: CPU bound
	Think about how many operations you do.

	New: Memory bound
	CPU operations are getting cheaper all the time as the CPU gets faster than the memory system.
	Think about how much "traffic" your algorithm must read and write. Once it's in the cache, it's cheap, so reading the same things multiple times is cheap. Reading consecutive addresses is also cheap.

	Cache
	All access is through the cache hierarchy, so reading or writing the 4 bytes at at address x, actually loads 16 bytes or so around that address. This is why touching consecutive memory locations is cheap.


	Linked List Example
	What is the cost of iterating through all the elements of a linked list?
	Need to load each linked list element: data + next field
	Bad: the next field itself is just added overhead
	Bad: the next linked list element will somewhere else in memory. Cache systems do best when you accessing contiguous stretches of memory.

	LinkedList vs. ChunkList
	Imagine a ChunkList implementation where each linked list element contains a small array of elements.
	The ChunkList is faster, purely because it makes better use of cache lines.
	The linked list probably gets just one client element per cache line loaded.
	Because the ChunkList stores the client elements adjacent to each other, it is able to load several all in one cache line.
	The point: think of an algorithm in terms of the memory touch pattern of an algorithm. The unit of cost is the number of cache lines pulled in from main memory.

	Array of Objects
	Suppose you have an array of objects, with ivars x, y, and z. in each object.
	What is the cost of adding up all the y's -- think in terms of cache lines.
	Suppose we re-organize the data into 3 "parallel" arrays -- one of all the x's, one of all the y's, and one of all the z's -- now what is the cost?
	The parallel arrays design is not OOP, and  it's just generally bad, but it could be a lot faster -- a technique to have in mind if you're truly desparate. NEVER do something like this for the original design -- fall back to it in desperation.


