
CS193j, Stanford Handout #33 
Summer, 2002-03 Manu Kumar 

Advanced Java 3 
Sun Stewardship 
Java is controlled by Sun, which is not as appealing as control by a non-profit such as the 

W3C 
However, there is precedent -- C and C++ were controlled by AT&T without harm 
The history of Sun's guidance of Java in the last 7 years has been pretty prudent and 

reasonable, so they have earned some trust. 
Hopefully, Sun is happy to develop Java as OS agnostic platform -- app writers may code 

to Java, and their apps will run everywhere. 
There is a stereotype that Sun is run by engineers, and Java may be an outgrowth of that. 
Microsoft has the most to lose from applications not being OS specific 
By the same token, every other vendor (Sun, IBM, Oracle, ...) benefits from a Java as a 

healthy, non Microsoft-specific platform for development. The EBM "Everyone But 
Microsoft" alliance. 

Java Open Development 
How to find about Java future directions? 
Sun actually does Java development very much out in the open 
Get a free account on java.sun.com, then... 

1. Read the top 25 bugs on the buglist 
2. Read the top 25 Request For Enhancements (RFE) 
You can vote for your favorite issues. 

Go the JCP (Java community process) site (http://www.jcp.org/) and look at the 
proposals in the various stages of development. You can observe movements and 
arguments for a couple years as features make their way into the language. 

Things which are showing up now in Java have been visible in some form or other above 
for years. 

Don't be discouraged by the complaining tone in the forums above  -- Sun gets a lot of 
credit for making their bug database and its arguments public. No complex system can 
exist in the open like that without a lot of flaming, complaining,  and posturing (this 
seems to be a truism of online communities). 

Java Development Themes 
Major themes in Java... 
Backward compatible -- old code continues to run, even as new features are added 
Portable -- write once, run everywhere 
Large library -- more and more off-the-shelf features get added to the library 
Elegant/Structured style vs. "quick 'n dirty" like Perl 
Slow progress -- Sun's guidance has tended to be slow and prudent 



 2

Sun seems to have a bias toward the "Elegant, Full-featured" solution instead of the 
"Simple but fast" solution. Time will tell if this is a good strategy. I suspect it is, 
considering the pace of hardware improvement vs. 20+ year lifetime of a popular 
computer language 

Java Niches -- Server vs. Client 
Niche: server-side internet apps -- Java is very popular here already -- portable, secure, 

programmer efficient -- show well in this niche 
"Business logic" applications using Java and its JDBC library to connect to the 

database and fiddle around with the data. Note: possibly no GUI, just strings, ints, 
dates, etc. 

Niche: "custom" applications 
A custom GUI application that is part of a larger custom system -- e.g. the "View 

Order Status" application used by the foo.com customer service people 
Possible niche: Client side java 
Possible niche: Small devices -- palm pilots, TVs, ... 

J2EE 
Java 2 Enterprise Edition (J2EE) 

J2SE is "standard" desktop java, and J2ME is the "micro" java for small devices 
"Enterprise" is the niche of large, corporate information technology (IT) projects, 

typically featuring databases. web sites, business processes, ... 
There's a lot of money spent here. 
Java is doing very well in this niche. 
J2EE is standard by which java objects interact with each other 
If the various parts of an IT solution are J2EE compliant, then it helps avoid vendor lock-

in, since the parts of more interchangeable. 
In reality, J2EE is fairly complex, so it adds some complexity to a project. 

HTML Forms Are A Hack 
Currently, almost all net services, (e.g. Amazon, yahoo email, ...) are presented through 

HTML forms. 
This has the huge advantage of compatibility -- it works with most any client OS, and 

such platform-independent compatibility has been the key ingredient in the growth of 
the internet. 

Note that the Internet did not develop exchanging proprietary .doc files, even though 
90% of users have MS Word -- the Internet explosion really kicked in with 100% 
portable, standard formats such as HTTP and HTML. 

However, HTML forms do not present a great interface -- the user sees a state, they can 
click a button, there is a 2 second delay, and they see the next state. 

Contrast this to a real GUI program -- you move the mouse or scroll a list, and 1/100th a 
of a second later you get the visual feedback. 

We are so used to HTML forms, we have grown blind to how lame they are for 
constructing a good UI. 



 3

Future: Real Client GUI 
Imagine Amazon client program 
Runs on the client side 
Communicates back to the server as needed 
Presents a responsive GUI to the client -- lists, text fields, selections etc. 
Still limited by networking speed, but can be far better than the HTML form 

Applets 
Run in a security "sandbox" in the browser -- prevent the applet from touching the local 

file system, etc. 
Applets have not caught on too much 
Performance problems 
Running inside the browser created inevitable reliability problems 

Microsoft is not, shall we say, enthusiastic about making applets work correctly in the 
browser. 

Original applets used AWT 
With the latest Java 1.2 or later installed on a machine, the Swing JApplet may be used -- 

the browser must be set up to support Java. 
Sun's "java plugin"  is a browser plugin that provides applet support. 

Jar files 
.jar file is an archive file that contains directories of .class files + misc images, sounds, 

and other support files. 
Double click on the .jar runs the application (works on windows, Solaris, and MacOSX) 
Users need to install Java first -- the Java Runtime Environment from Sun (JRE) 
Code does not run in a "sandbox"  
It's easy to package your java application into a .jar file -- then you can distribute it as 

simply as a PDF. Users just download the file and double click it. 

Java Web Start 
Replacement for applets and jar files 
http://java.sun.com/products/javawebstart/ 
Client installs the JWS loader on their machine once (like installing Acrobat). Installing 

the Java Runtime Environment installs JWS automatically. 
Package app in  a .jar 
Put a link to the app on a web page -- when the user  clicks the link, JWS downloads the 

appropriate .jar files if needed and launches the application. 
The convenience of an applet (access through URLs) but without the problems of running 

in the browser. 
For example, the little DiceMachine java application I wrote at 
http://www-cs-students.stanford.edu/~nick/dice/ 
can be accessed through Java Web Start and as a plain .jar file. 
Here's the .jnlp file for DiceMachine -- it's based on the Sun example... 
 
<?xml version="1.0" encoding="utf-8"?> 
<!-- trying to make a simple, working jnlp for DiceMachine.jar --> 



 4

<jnlp 
 spec="1.0+"  <!-- can be omitted --> 
  
 <!-- where other things are found --> 
 codebase="http://www-cs-students.stanford.edu/~nick/dice/" 
 
 <!-- where the .jnlp file itself lives --> 
 href="dice.jnlp" 
> 
 
  
<information> 
 <title>DiceMachine</title> 
      <vendor>Nick Parlante</vendor> 
       <homepage href="http://www-cs-students.stanford.edu/~nick/dice/"/> 
        <description kind="one-line">Dice rolling application</description> 
        <description kind="short">Dice rolling application that graphs the 
distribution or rolls. Perfect for the game Settlers of Catan.</description> 
 
 
        <icon href="dice-small.jpeg"/> 
 
 <!-- this allows the app to be run without a net connection --> 
        <offline-allowed/> 
</information> 
 
<resources> 
 <j2se version="1.2+"/> 
        <jar href="DiceMachine.jar" main="true" download="eager" /> 
</resources> 
 
<!-- what's the main class --> 
<application-desc main-class="DiceMachine"/> 
 
</jnlp> 
 
 
 
Unsigned code runs in a sandbox 
The client just downloads the .jnlp file which points to enough info for the client to 

download and run the java code. 
Can run with or without a net connection once downloaded. 
Can check for updates automatically 
The point: You send someone just a URL, and they can just click it to run the program on 

their machine. Updates can happen automatically. 

Will JWS Catch On? 
Like Flash catching on -- chicken-and-egg problem that works best if many clients have 

it pre-installed. 
This will be hard since Microsoft controls the dominant OS and browser, and Microsoft 

hates Java 
Enterprises love it internally -- easy way to distribute and update little custom apps -- just 

send out the URL 

J2ME/MIDP 
Mobile Information Device Profile 



 5

Allow you to write small apps that work on cell phones, Palm, Windows CE, ... 
http://java.sun.com/j2me/ 
http://java.sun.com/products/midp/ 
Write a "midlet" that runs on a small device with limited GUI facilities 
Works on PalmOS 3.5 
Subset of Java for small devices -- not as heavyweight as Swing 
Also, Connected Limited Device Configuration -- CLDC -- phones, etc. 
Many vendors are excited about the "small device" space -- a new frontier vs. the desktop 
Many cell phones now support this -- java is used to construct the internal "applications" 

of the phone (phone log, etc.) 
May also be used for downloadable games, etc. 
Some providers let you install your own MIDP apps on the phone, while some have a 

"captive" strategy which only allow java apps approved by the service provider. The 
lesson of the Internet is that the captive strategy tends to lose to the wide-open strategy. 

New 1.4 EventHandler Style 
�Removes the need for creating lots of ActionListener objects 
Instead, use EventHandler.create(...) to make a little handler -- specify what object to 

notify, and what message to send 
EventHandler uses introspection heavily 
In the future, the Sun BeanBuilder (not yet released) project may allow you to construct 

your GUI like a draw program. 
BeanBuilder can write out the EventHandler glue for you 
http://java.sun.com/j2se/1.4/docs/api/java/beans/EventHandler.html 
 

 
 
 
// Swing2 
/* 
 Demonstrates a little use of the EventHandler class. 
*/ 
import java.awt.*; 
import javax.swing.*; 
import java.util.*; 
import java.awt.event.*; 
 
import java.beans.*; 
 
public class Swing2 extends JFrame { 
 JTextField field; 
 JLabel label; 
  
  



 6

 public void beep() { 
  System.out.println("beep!"); 
 } 
   
 public Swing2() { 
  JComponent content = (JComponent) getContentPane(); 
  content.setLayout(new BoxLayout(content, BoxLayout.Y_AXIS)); 
   
  JButton b1 = new JButton("Beep"); 
  content.add(b1); 
  b1.addActionListener( 
   // Send msg to: this 
   // Message to send: beep 
      (ActionListener)EventHandler.create(ActionListener.class, this, "beep") 
     ); 
      
      
  JButton b2 = new JButton("Foo"); 
  content.add(b2); 
  b2.addActionListener( 
      (ActionListener)EventHandler.create(ActionListener.class, this, "foo") 
     ); 
     // When clicked, this looks for a foo() message, which does not exist 
      
     JLabel label = new JLabel("label"); 
     content.add(label); 
      
     field = new JTextField(20); 
     content.add(field); 
      
     field.addActionListener( 
      // send msg to: label 
      // msg to send: setLabel 
      // value to send: event.getSource().getText() 
      (ActionListener)EventHandler.create(ActionListener.class, label, "text", 
"source.text") 
     ); 
   
  pack(); 
  setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
  setVisible(true); 
   
 } 
  
 public static void main(String[] args) { 
  new Swing2(); 
 } 
} 
 

Java Beans 
Actually really simple -- like an ADT 
Bean 

Has an empty ctor 
Has getFoo and setFoo methods for each of its public properties 

Unit of exchange 
Module A wants to package information for others to use 
Set up a "bean" class that uses getters and setters in the standard way 
Then other programmers can use it easily 

Bean tools 



 7

Tools can understand the create/get/set nature of the bean to allow people to 
manipulate it without writing code. 

Old Serialization 
Design -- how to you serialize off a Java class? 
Old serialization: write out its ivars 
Problem: what if the class changes impl? 

New, XML "Persistence" 
http://java.sun.com/j2se/1.4/docs/guide/beans/index.html 
http://java.sun.com/products/jfc/tsc/articles/persistence/ 
http://java.sun.com/products/jfc/tsc/articles/persistence2/ 
http://java.sun.com/products/jfc/tsc/articles/persistence3/ 
Only serialize state that is accessible through public get/set methods (the "bean" view of 

an object) 
This is the technology that underlies the new GUI/Bean/XML layout editor technology 

(not yet released) 
Be smart about constructor defaults... 
To serialize Foo f... 
1. Construct Foo s; 
2. Compute what setXXX() messages are necessary so that s looks like f. 
3. Record the arguments for the ctor/setXXX sequence -- that is the persistent form of f 
Advantages: totally independent of implementation. In fact you could serialize as Foo, 

and then read back into a different class, say Bar, so long as Bar had the same public 
ctor/get/set semantics as Foo. 

GUI Construction -- Bean Builder (1.4+) 
The "BeanBuilder" app lets you draw/edit your GUI. 
BeanBuilder is in beta -- it's not done yet. 
http://java.sun.com/products/javabeans/beanbuilder/index.html 
When you're satisfied, you serialize (dehydrate) down the collection of GUI objects 
At run-time, the objects are read in to memory (rehydrated) to re-create the whole GUI 

and all the listener connections. 



 8

 
Create a couple components 
 

 
Drag a connection from the button to the label 
 
 



 9

 
Set the connection to send the setText() message 
 
 



 10

Other Java Areas... 
RMI 
Distributed processing -- make objects that are on "remote" JVMs (on other machines) 

look like ordinary objects in your local JVM. 
Depends on portability to send bytecode around the network. 
Depends on serialization standard to move objects around the network. 
Depends on "sandbox" security to run the inbound code safely. 
Performance is a little slow, since it depends on serialization machinery, however the 

network itself probably represents most of the delay, so who cares. 

JINI 
"Federation" layer allowing little devices to cooperate. Everybody thinks this niche is 

going to be the next big thing, but it doesn't really exist yet. 
Example -- 

Your CD player sends its GUI code (java bytecode) to your palm pilot. The GUI code 
understands the CD player. On the Palm, the GUI code presents all the songs that 
are on the CD player, and you use the GUI to communicate back to the CD player. 
Your Palm and your CD player interact without being pre-designed for each other 
by exchanging  code. 

JDBC 
Standard layer to interact with a database... 
Write queries...get results 

Java Servlets 
Used on the server side code ("business logc") for a web application 
This is a 2nd generation technology -- perl CGI's were the first generation 
(Take CS193i) 

Java Server Pages (JSP) 
Related to servlets 
A more lightweight way to encode an HTML page that calls little bits of java code at 

strategic points. 
Similar to PHP, ASP 
(Take CS193i) 

Java 2d / Java 3d / Imaging 
Image IO -- package for manipulating image data specifically 
Advanced Imaging -- manipulatio of large bitmap images 

(http://java.sun.com/products/java-media/jai/) 
Scalable Vector Graphics (SVG) -- W3C standard for vector graphics(similar to PDF) -- 

SVG will be very useful if it catches on. The Batik project links SVG and java 
(http://xml.apache.org/batik/) 



 11

 


	Sun Stewardship
	Java is controlled by Sun, which is not as appealing as control by a non-profit such as the W3C
	However, there is precedent -- C and C++ were controlled by AT&T without harm
	The history of Sun's guidance of Java in the last 7 years has been pretty prudent and reasonable, so they have earned some trust.
	Hopefully, Sun is happy to develop Java as OS agnostic platform -- app writers may code to Java, and their apps will run everywhere.
	There is a stereotype that Sun is run by engineers, and Java may be an outgrowth of that.
	Microsoft has the most to lose from applications not being OS specific
	By the same token, every other vendor (Sun, IBM, Oracle, ...) benefits from a Java as a healthy, non Microsoft-specific platform for development. The EBM "Everyone But Microsoft" alliance.

	Java Open Development
	How to find about Java future directions?
	Sun actually does Java development very much out in the open
	Get a free account on java.sun.com, then...
	1. Read the top 25 bugs on the buglist
	2. Read the top 25 Request For Enhancements (RFE)
	You can vote for your favorite issues.

	Go the JCP (Java community process) site (http://www.jcp.org/) and look at the proposals in the various stages of development. You can observe movements and arguments for a couple years as features make their way into the language.
	Things which are showing up now in Java have been visible in some form or other above for years.
	Don't be discouraged by the complaining tone in the forums above  -- Sun gets a lot of credit for making their bug database and its arguments public. No complex system can exist in the open like that without a lot of flaming, complaining,  and posturing

	Java Development Themes
	Major themes in Java...
	Backward compatible -- old code continues to run, even as new features are added
	Portable -- write once, run everywhere
	Large library -- more and more off-the-shelf features get added to the library
	Elegant/Structured style vs. "quick 'n dirty" like Perl
	Slow progress -- Sun's guidance has tended to be slow and prudent
	Sun seems to have a bias toward the "Elegant, Full-featured" solution instead of the "Simple but fast" solution. Time will tell if this is a good strategy. I suspect it is, considering the pace of hardware improvement vs. 20+ year lifetime of a popular c

	Java Niches -- Server vs. Client
	Niche: server-side internet apps -- Java is very popular here already -- portable, secure, programmer efficient -- show well in this niche
	"Business logic" applications using Java and its JDBC library to connect to the database and fiddle around with the data. Note: possibly no GUI, just strings, ints, dates, etc.

	Niche: "custom" applications
	A custom GUI application that is part of a larger custom system -- e.g. the "View Order Status" application used by the foo.com customer service people

	Possible niche: Client side java
	Possible niche: Small devices -- palm pilots, TVs, ...

	J2EE
	Java 2 Enterprise Edition (J2EE)
	J2SE is "standard" desktop java, and J2ME is the "micro" java for small devices

	"Enterprise" is the niche of large, corporate information technology (IT) projects, typically featuring databases. web sites, business processes, ...
	There's a lot of money spent here.
	Java is doing very well in this niche.
	J2EE is standard by which java objects interact with each other
	If the various parts of an IT solution are J2EE compliant, then it helps avoid vendor lock-in, since the parts of more interchangeable.
	In reality, J2EE is fairly complex, so it adds some complexity to a project.

	HTML Forms Are A Hack
	Currently, almost all net services, (e.g. Amazon, yahoo email, ...) are presented through HTML forms.
	This has the huge advantage of compatibility -- it works with most any client OS, and such platform-independent compatibility has been the key ingredient in the growth of the internet.
	Note that the Internet did not develop exchanging proprietary .doc files, even though 90% of users have MS Word -- the Internet explosion really kicked in with 100% portable, standard formats such as HTTP and HTML.

	However, HTML forms do not present a great interface -- the user sees a state, they can click a button, there is a 2 second delay, and they see the next state.
	Contrast this to a real GUI program -- you move the mouse or scroll a list, and 1/100th a of a second later you get the visual feedback.
	We are so used to HTML forms, we have grown blind to how lame they are for constructing a good UI.

	Future: Real Client GUI
	Imagine Amazon client program
	Runs on the client side
	Communicates back to the server as needed
	Presents a responsive GUI to the client -- lists, text fields, selections etc.
	Still limited by networking speed, but can be far better than the HTML form

	Applets
	Run in a security "sandbox" in the browser -- prevent the applet from touching the local file system, etc.
	Applets have not caught on too much
	Performance problems
	Running inside the browser created inevitable reliability problems
	Microsoft is not, shall we say, enthusiastic about making applets work correctly in the browser.

	Original applets used AWT
	With the latest Java 1.2 or later installed on a machine, the Swing JApplet may be used -- the browser must be set up to support Java.
	Sun's "java plugin"  is a browser plugin that provides applet support.

	Jar files
	.jar file is an archive file that contains directories of .class files + misc images, sounds, and other support files.
	Double click on the .jar runs the application (works on windows, Solaris, and MacOSX)
	Users need to install Java first -- the Java Runtime Environment from Sun (JRE)
	Code does not run in a "sandbox"
	It's easy to package your java application into a .jar file -- then you can distribute it as simply as a PDF. Users just download the file and double click it.

	Java Web Start
	Replacement for applets and jar files
	http://java.sun.com/products/javawebstart/
	Client installs the JWS loader on their machine once (like installing Acrobat). Installing the Java Runtime Environment installs JWS automatically.
	Package app in  a .jar
	Put a link to the app on a web page -- when the user  clicks the link, JWS downloads the appropriate .jar files if needed and launches the application.
	The convenience of an applet (access through URLs) but without the problems of running in the browser.
	For example, the little DiceMachine java application I wrote at
	http://www-cs-students.stanford.edu/~nick/dice/
	can be accessed through Java Web Start and as a plain .jar file.
	Here's the .jnlp file for DiceMachine -- it's based on the Sun example...
	Unsigned code runs in a sandbox
	The client just downloads the .jnlp file which points to enough info for the client to download and run the java code.
	Can run with or without a net connection once downloaded.
	Can check for updates automatically
	The point: You send someone just a URL, and they can just click it to run the program on their machine. Updates can happen automatically.

	Will JWS Catch On?
	Like Flash catching on -- chicken-and-egg problem that works best if many clients have it pre-installed.
	This will be hard since Microsoft controls the dominant OS and browser, and Microsoft hates Java
	Enterprises love it internally -- easy way to distribute and update little custom apps -- just send out the URL

	J2ME/MIDP
	Mobile Information Device Profile
	Allow you to write small apps that work on cell phones, Palm, Windows CE, ...
	http://java.sun.com/j2me/
	http://java.sun.com/products/midp/
	Write a "midlet" that runs on a small device with limited GUI facilities
	Works on PalmOS 3.5
	Subset of Java for small devices -- not as heavyweight as Swing
	Also, Connected Limited Device Configuration -- CLDC -- phones, etc.
	Many vendors are excited about the "small device" space -- a new frontier vs. the desktop
	Many cell phones now support this -- java is used to construct the internal "applications" of the phone (phone log, etc.)
	May also be used for downloadable games, etc.
	Some providers let you install your own MIDP apps on the phone, while some have a "captive" strategy which only allow java apps approved by the service provider. The lesson of the Internet is that the captive strategy tends to lose to the wide-open strat

	New 1.4 EventHandler Style
	Removes the need for creating lots of ActionListener objects
	Instead, use EventHandler.create(...) to make a little handler -- specify what object to notify, and what message to send
	EventHandler uses introspection heavily
	In the future, the Sun BeanBuilder (not yet released) project may allow you to construct your GUI like a draw program.
	BeanBuilder can write out the EventHandler glue for you
	http://java.sun.com/j2se/1.4/docs/api/java/beans/EventHandler.html
	�

	Java Beans
	Actually really simple -- like an ADT
	Bean
	Has an empty ctor
	Has getFoo and setFoo methods for each of its public properties

	Unit of exchange
	Module A wants to package information for others to use
	Set up a "bean" class that uses getters and setters in the standard way
	Then other programmers can use it easily

	Bean tools
	Tools can understand the create/get/set nature of the bean to allow people to manipulate it without writing code.


	Old Serialization
	Design -- how to you serialize off a Java class?
	Old serialization: write out its ivars
	Problem: what if the class changes impl?

	New, XML "Persistence"
	http://java.sun.com/j2se/1.4/docs/guide/beans/index.html
	http://java.sun.com/products/jfc/tsc/articles/persistence/
	http://java.sun.com/products/jfc/tsc/articles/persistence2/
	http://java.sun.com/products/jfc/tsc/articles/persistence3/
	Only serialize state that is accessible through public get/set methods (the "bean" view of an object)
	This is the technology that underlies the new GUI/Bean/XML layout editor technology (not yet released)
	Be smart about constructor defaults...
	To serialize Foo f...
	1. Construct Foo s;
	2. Compute what setXXX() messages are necessary so that s looks like f.
	3. Record the arguments for the ctor/setXXX sequence -- that is the persistent form of f
	Advantages: totally independent of implementation. In fact you could serialize as Foo, and then read back into a different class, say Bar, so long as Bar had the same public ctor/get/set semantics as Foo.

	GUI Construction -- Bean Builder (1.4+)
	The "BeanBuilder" app lets you draw/edit your GUI.
	BeanBuilder is in beta -- it's not done yet.
	http://java.sun.com/products/javabeans/beanbuilder/index.html
	When you're satisfied, you serialize (dehydrate) down the collection of GUI objects
	At run-time, the objects are read in to memory (rehydrated) to re-create the whole GUI and all the listener connections.

	Other Java Areas...
	RMI
	Distributed processing -- make objects that are on "remote" JVMs (on other machines) look like ordinary objects in your local JVM.
	Depends on portability to send bytecode around the network.
	Depends on serialization standard to move objects around the network.
	Depends on "sandbox" security to run the inbound code safely.
	Performance is a little slow, since it depends on serialization machinery, however the network itself probably represents most of the delay, so who cares.

	JINI
	"Federation" layer allowing little devices to cooperate. Everybody thinks this niche is going to be the next big thing, but it doesn't really exist yet.
	Example --
	Your CD player sends its GUI code (java bytecode) to your palm pilot. The GUI code understands the CD player. On the Palm, the GUI code presents all the songs that are on the CD player, and you use the GUI to communicate back to the CD player. Your Pal


	JDBC
	Standard layer to interact with a database...
	Write queries...get results

	Java Servlets
	Used on the server side code ("business logc") for a web application
	This is a 2nd generation technology -- perl CGI's were the first generation
	(Take CS193i)

	Java Server Pages (JSP)
	Related to servlets
	A more lightweight way to encode an HTML page that calls little bits of java code at strategic points.
	Similar to PHP, ASP
	(Take CS193i)

	Java 2d / Java 3d / Imaging
	Image IO -- package for manipulating image data specifically
	Advanced Imaging -- manipulatio of large bitmap images (http://java.sun.com/products/java-media/jai/)
	Scalable Vector Graphics (SVG) -- W3C standard for vector graphics(similar to PDF) -- SVG will be very useful if it catches on. The Batik project links SVG and java (http://xml.apache.org/batik/)


