
CS193j, Stanford Handout #3
Winter, 2002-03 Nick Parlante

OOP

Procedural vs. OOP
Nouns and Verbs
Nouns -- data
Verbs -- operations

Procedural Structure
C/Pascal/etc. ...
Verb oriented

decomposition around the verbs -- dividing the big operation into a series of
smaller and smaller operations.

Nouns/Verb structure is not formal
The programmer can group the verbs and nouns together (ADTs), but it's just

a convention and the compiler does not especially help out.

OOP Structure
Objects
Storage

Objects store state at runtime (ivars)
Behavior

Objects will also in some sense take an active role. Each object has a set of
operations that it can perform, usually on itself. (methods)

Class
Every object belongs to a class that defines its storage and behavior.
An object always remembers its class (in Java).
"Instance" is another word for object -- an "instance" of a class.

Anthropomorphic -- self-contained
Procedural variables are passive -- they just sit there. A procedure is called

and it changes the variable.
Objects are anthropomorphic-- the object has both storage and behavior to

operate on that state.
String example

Could have a couple String objects, each of which stores a sequence of
characters. The objects belong to the String class. The String class defines the
storage and operations for the String objects...

String class

length() {
 ---;
 ---;
}

reverse() {
 ---;
 ---;
}

“hello”

String

“hi”

String

length()

5

Sending the length()
message to a String
object...

Class
Exists once -- there is one copy of the class in memory.
Defines the storage and behavior of its objects
Storage

Define the storage that objects of this class will have.
"instance variables" -- the variables that each object will use for its own

storage. Instance variables are usually just called "ivars".
Behavior

Define the behaviors that objects of this class can execute (methods).
String example

The String class defines the storage structure used by all String objects --
probably an array of chars of some sort

The String class also defines the operations that String objects can perform on
themselves -- length(), reverse(), ...

Message / Receiver
Suppose we have Student objects, each of which has a current number of units.

The message getUnits() requests the units from a student.
Java syntax:

a.getUnits()
send the "getUnits()" message to the receiver "a"

Receiver
The "receiver" is the object receiving the message. Typically, the operation

uses the receiver's memory.

Method (code)
A "method" is executable code defined in a class.
The objects of a class can execute all the methods their class defines.

The String class defines the code for length() and reverse() methods. The
methods are run by sending the "length()" or "reverse()" message to a String
object.

Message -> Method resolution
Suppose a message is sent to an object --- x.reverse();
1. The receiver, x, is of some class -- suppose x is of the String class
2. Look in that class of the receiver for a matching reverse() method (code)
3. Execute that code "against" the receiver-- using its memory (instance variables)
In Java this is "dynamic" -- the message/method resolution uses the true, run-

time class of the receiver.

OOP Design - Anthropomorphic,
Modular
1. Objects responsible for their own state -- as much as possible, object's do not

reach in to read or write the state of other objects.
2. Objects can send messages to each other -- requests
3. The object/message paradigm makes the program more modular internally.

Each class deals with its own implementation details, but can be largely
independent of the details of the other classes. They just exchange messages.

OOP Design Rule #1 -- Encapsulation
Objects "protect" their own state from direct access by other objects --

"encapsulation". Other objects can send requests, but only the receiver actually
changes its own state. This allows more reliable software -- once a class is
correct and debugged, putting it in a new context should not create new bugs.

Abstraction vs. Implementation
This is the old Abstract Data Type (ADT) style of separating the abstraction

from the implementation, but structured as messages (abstraction) vs.
methods (implementation)

OOP Design Process
Think about the objects that make up an application
Think about the behaviors or capabilities those objects should have
Endow the objects with those abilities as methods
If a capability does not occur to you in the initial design, that's ok. Add it to the

appropriate class when needed -- the just needs to go in the right class
Co-operation

Objects send each other messages to co-operate
Tidy style

Experience shows that having each object operate on its own state is a pretty
intuitive and modular way to organize things.

