CS193J Handout #7
Winter, 2002-03

HW 1: Pencil me in!”

(Thisassignment was created by Julie Zelenski.) This assignment stresses the basic stepsin OOP
design — solving alarge coding problem by dividing it up into several smaller classes. Thisisnot a
trivia little assignment. It’ s big enough to have some real substance to it. The assignment is due
midnight at the end of Wed, Jan 29™.

With al the commitments you have vying for your attention, it's no wonder you're not getting
enough seep and are having trouble perking up for your (fascinating) Java class, not to mention
accidentally scheduling your doctor's appointment during your PoliSci midterm, and calling your
mom two days late to wish her a happy birthday. Did your new quarter resolutions contain such
tried-and-true entries as "better time-management™ and "be more organized" (not to mention "bring
more chocolate to my favorite CS instructor")? Now with the miraculous power of Javain your life,
you're ready to write the calendar keeper to make these sort of mishaps athing of the past and
reform yourself into an super-charged impressively organized wonder for all to behold. The goal of
this assignment is to refresh your programming and data structure design skills and give you some
experience with the syntax and features of Java as well as basic object-oriented programming. You
will make use of severa Java built-in classes (String, Date, collections, |/O classes) and design
some of your own objects. We will give you afew pre-defined objects and you will write afew
additional objects of your own to coordinate with them.

A brief overview

Pencil Me Inisaprogram designed to read afile containing a caendar of events and generate a
weekly schedule in HTML format suitable for framing, or even better, posting to your persona web
page so al can keep track of your busy schedule. A sample HTML table is shown below:

ATl e -

Jam 10am 1lam 12pm 1pm 2pm Jpm 4pm
[Sun 926
Mon 927 [T CEI95T Lectuie Dentist
1lam-12:15pm a_pp'[
Spm-dpm

Tue 928 Interview at Apple
9:50am - 12pm

1lam -12:15pm

Wed 9129 [CE193T Lecture

Thu ¥30 CRE0D
3:15pm-4:30pm
Fri 10i1 [CELGET [Hiking with ¥iv
sSecton Ipm-dpm
llam-11:50am
Sat 1042

The program itself is operated from the command-line. The user is prompted to enter the name of
the file to read events from, afew questions are asked to configure the desired output, and the

i Okay, it's actually a plagiarized name. Pencil Me In is the name of one of the first serious productivity applications written in Java, (although
originally was written for NeXTstep!). It came from Sarrus Software, a startup founded by friends of mine, which was acquired by Javasoft.
Go Andy and Brian! And while we are thanking folks, thanks to Owen Astrachan at Duke for the idea of generating HTML schedules.

program outputs an HTML file containing the schedule. The user can choose to generate schedules
from this and other files until they are done. Here is a script from a sample run of the program:

Wel cone to the Pencil Me |In datebook program

This programreads in event files and generates HTM. weekly schedul es. For
conveni ence, when you are asked a question, the answer given in [brackets]
is the default used if you don't choose to enter a response.

Enter nane of file to read [events.txt]: sanple.txt

Now ready to output HTM. schedul es.

Enter start date for schedule [9/27/99]: 9/26/99

Do you wish to create a table or list? [table]:

Enter nanme of file to output [table.htm]: fall.htm

Wote weekly schedule to file.

Do you wish to create other schedules fromthis same file? [n]

Do you wish to read another event file? [n]
Goodbye!

Events and the file format

A personal datebook consists of a collection of events. An event represents an activity scheduled for
aparticular timeinterval on agiven day and includes information about what the event is, a color,
and an optional URL for more information. Events can be of two different varieties: regular or one-
time. A regular event is one that is scheduled every week on the same day or days, such as alecture
that meets every Monday and Wednesday. A one-time event is scheduled on a particular date, such
as 10/15/99, and doesn’t repest. In the previous sample table, one-time events were printed in

bol df ace to distinguish them from regular events.

Theinput to Pencil Me Inisatext file of events. Each event takes up two lines. On thefirst lineis
the name of the event, the second line gives the information about when and what in this format:

Narme of Event
DaysOrDate StartTine EndTi ne Col or URL

Name of Event Thefirst line contains the name of the event, it may contain spaces.

DaysOrDate For aregular event, thiswill be a sequence of day abbreviations
(SMTWHFA, upper or lower case). The days can bein any order. For aone-
time event, thisisadate in the format m/d/y, e.g. 6/12/99. There can be no
spaces within a DaysOrDate string.

SartTime The time the event begins. Two time formats are accepted, either military 24-
hour time or 12-hour time with am/pm. The minutes can be left off, in which
case it isassumed they are zero. Thus, acceptable times would be 3:15pm or
4pm aswell as 15:15 or just 16. There can be no spaces within atime string.

EndTime The time at which the event ends, using same format as start time.

Color One of the 16 pre-defined HTML colors (black, white, red, green, blue,
yedlow, purple, silver, lime, olive, maroon, navy, tedl, fuchsia, aqua, gray). The
color isused for the font (list) or cell background (table) for this event.

URL A URL to link to for more information on this event. If thereis no link for
this event, the field may be absent entirely. A URL cannot contain spaces.

Any linein the event file that is empty or that beginswith a# character should be trested as a
comment line and ignored. Here isthe event file that was used to generate the table on the first page:

Fall quarter events

CS193J Lecture

MN 1lam 12: 15 vyellow http://ww. stanford. edu/cl ass/cs193j/
CS193J Section

F 11:00 11:50 yellow http://ww. stanford. edu/cl ass/cs193j/
SWE Meeting

W 12:15pm 1pm red htt p: // ww. st anf or d. edu/ gr oup/ swe/
CSs200

H 3:15pm 4:30pm silver http://cse.stanford. edu/cl ass/ cs200/
Cs678

TH 1: 15pm 2: 05pm f uchsi a

Interview at Apple

9/28/99 9:30am 12 aqua http://ww. appl e. con!

H king with Viv

10/1/99 2pm 4pm pink mailto: Vivian_Houng@rch. org

SF Zoo trip

10/2/99 10am 3pm linme http://ww. sfzoo. conl

Denti st appt

9/ 27/99 3pm 4pm si |l ver

Each of the event fields on the second line cannot contain embedded spaces, but there may be
arbitrary white space and tabs between the fields. The recommended way to separate the lineinto
fieldswill be to use the java.util.StringTokenizer classto break the line apart into tokens and then
convert each token to atime or date as necessary.

HTML output

After parsing thefile, your program will allow the user to output one week’ s schedule based on the
eventsread in from the file. Y our program should prompt the user to choose the starting date for the
schedule. The user is also alowed a choice between output formats. Y our program should support
both alist format and atable format. And finally, the user is allowed to choose the filename for the
output, the default is table.html or list.html, depending on the format chosen. Both formats show all
of the regularly scheduled events as well as any one-time eventsthat fall in thisweek. A sample
table was shown earlier; the list format for the same event file would ook like:

8 2un 926

o Moo 9127
o Fiawm - BTSSR
O FR - S

8 Tue 925

o FRRw - S

O FAERm - 2R CEETE
8 Wed 929

o Fiawm - LTS

o FEFSnm - Fpay BWE Meeting
& Thu 9/30

O FAERm - 2Ry CEETE

O FFERW - SRR
@ Frilo'l

o Fiam - FR S

O SR -
& Sat 10/2

O Fi - Zr

For the list format, the days of the week are listed chronologically and the events within aday are
givenintime order. Each event is prefaced by itstime interval, its name is printed in the event’s

chosen color, and link to the optional URL attached to the event name. The one-time events are
printed in bold to distinguish them from the regular events.

For the table format, the hours of the day are the columns going from left to right across the top and
days of the week are the rows. Rather than always spanning the same fixed time range, the table
must be customized for the week being displayed. The table starts at the beginning of the earliest
event occurring in the week and stops at the end of the latest (you can round outward to multiples of
an hour for start and stop if you like). Along the top, you should provide markers for the time
intervals, every hour or half hour or so should be enough. Along the left, each row islabelled with
the date. Within aday, the events are drawn as boxes to indicate the span of the event’stime
interval. The size of the box should correspond to the event duration. It is acceptable to round the
sizesto small multiplesif you find that easier to manage (i.e. rounding the event start and stop time
to the closest 5-minute boundary would be okay). The boxes should be colored in the event’s
color, the event name and time interval are printed, and the link to the optional URL is attached to
the name. Again the one-time events are printed in bold to distinguish them from the regular events
(or at least in some way distinguished).

Thelist format is certainly the easier format, so we definitely recommend you start with that one.
Once you have that working, move on to the more sophisticated table output. Y ou can construct the
table either as one large table where the events are configured as cells that span multiple columns or
as an arrangement of nested tables, where each daily row isatable itself within the larger table.
Either will work and both have their advantages and disadvantages.

HTML advice

Most of you have probably had experience with HTML, but for those of you who are unfamiliar
with the details of lists and tables, we' ve added alink from the “ Other materials” section of our
web site with pointers to various HTML references on-line. Also in the other materials section, there
are pointers to a sample output pages. Using the View Source option of your browser, you can
examine the HTML we generated to help you plan your strategy.

Y our output does not need to exactly match ours. Y ou are welcome to make your own choices for
fonts, sizes, layouts, borders, aignment, etc. to design an arrangement that you find visualy
pleasing. It needs to meet the basic requirement of properly arranging the events into the weekly
schedule with colors and links (and with some visua distinction between the regular and one-
events) but beyond that the aesthetic choices are up to you. Some examples. You are free to select
the font styles and sizes you like for the different components. Y ou can choose to make the rows
and columns of afixed height or alow the browser to apportion the space depending on need. You
can choose how to represent a day that has no events scheduled (as an empty normal-height row, as
athin row, with someindication of “no events’, whatever you find appealing). And so on...

Interacting with the user

The program has a simple command-line interface to allow the user to select afileto read and
configure the output schedule. The interaction should be very fault-tolerant, given the doppy nature
of human typing. For example, if the user’s choice of file cannot be opened, prompt again until they
provide avalid entry. Similarly for choosing the starting date or other output parameters, you
should gracefully handle invalid responses and ask again until you get an acceptable answer. For
each question asked, there should be a default response offered and used when the user smply hits
return. Our Simplelnput class (described below) offers help with these tasks.

Although we are accepting of variationsin the HTML output, we expect your handling of user
interaction to mimic the one given on page 2 of the handout to facilitate testing.

Input and output

Y ou will need to use Java's I/O classes for this program. Unfortunately, these classes require the
use of some language facilities (exceptions) that we won't get to until later in the quarter. To
smooth this over, we have provided you with some wrapper classes to help handle these cases for
you. Below isavery brief overview of the three classes. The provided source files are documented
(in javadoc format) with more details on the methods and usage for each class.

The Si npl el nput class provides a simple mechanism for reading input from the user. It has
methods reminiscent of the CS106 simpio library such asr eadLi ne() ,r eadl nt eger (),
readYesOr No() , etc. that prompt the user, check for correctly formatted input, and force the user
to re-enter when needed.

Si npl eFi | eReader isasmall classthat can open afilefor reading and read its contents line-
by-line. It works entirely in terms of strings. If you need to convert the lines into other formats, use
string mani pul ations such as separating the lines into tokens using the StringTokenizer, or using the
Integer class to convert strings to integer, etc.

Si npl eFi | eWi t er isanother small classthat opensafile for writing and can print to it using
print and println methods like the standard System.out stream.

We may have achance to discuss /0 in more detail at some later point, but mostly you will be
responsible for reading up on this (in textbook or web or wherever) to pick up the myriad details as
needed. Handling I/O is one of the more uninteresting language features— every language doesiit,
each isdifferent in annoying ways, and there are always dozens of little details to absorb. We
recommend the approach of looking up the details on a"need to know" basis.

Conversion utilities

Another classthat we provideto you isthe Conver t classthat offers afew routinesto convert
strings to dates and times. Like the I/O classes, we give thisto you because it requires exception
handling. All the operations are static methods (since they are effectively just functions) that you
invoke on the Convert classitself, afew examples are shown below. The source file is documented
(in javadoc format) with more details on the methods and usage for each method.

To convert strings to dates and vice versa:

Date today = Convert.stringToDate("10/1/99");
Systemout.printin("It is " + Convert.dateToString(today));

The dateToString operation is overloaded to accept custom format strings:
Systemout.println("It is " + Convert.dateToString(today, "E Md"));

To convert stringsto times:

Ti me noon = Convert.stringToTi ne("12pm'");
Time late = Convert.stringToTi me("23:55");

Formatting output

In order to do formatted output (decimalsto 2 places and the like), the Java strategy isto use a
"formatter" object to convert the value into a formatted string before printing. The formatting
classesare contained inthej ava. t ext package and are documented in the on-line class
specifications and briefly at the end of Chapter 24 of your text. The Java formatters use patternsto
describe the desired formetting that are similar but not the same aspr i nt f . Here arefew simple
examplesthat giveyou ataste:

To print integer numbers with a minimum of 4 digits and pad with zeros when necessary:

i mport java.text.Deci nal For mat ;

Deci mal Format formatter = new Deci mal For mat (" 0000");
String formattedNum = formatter.formt(soneNunber);

To constrain afloating point number to at most 3 decimal places, but lessif not needed:

Deci mal Format formatter = new Deci mal For mat (" #. ###") ;
String formattedNum = fornmatter. formt(soneNunber);

To print short dates in the form "Wed 1/13":
i mport java.text.Sinpl eDat eFor mat;

Si npl eDat eFormat formatter = new Si npl eDat eFormat ("E M d");
String formattedDate = formatter. format (soneDate);

Requirements summary

Because my assignment handouts tend to run long and contain lots of details, I've been trying a new
strategy of summarizing the assignment requirements here at the end as a check-off list to help
ensure you haven't missed anything important. | hope you find this useful.

General

* Your source files should be easily readable on UNIX— i.e. end-of-line characters should be
proper, lines shouldn't wrap in obnoxious places, etc. Thisis of particular importance to those
of you moving your filesto Solaris from elsewhere.

* The submitted project should include all necessary files. We should be able to issue the
commandj avac *.j ava andal filesshould compile cleanly (i.e. with no warnings).

* Your main class should be named PencilMeln and should regquire no command-line
arguments. After compiling, we should be able to run your program with the command j ava
Penci | Mel n.

» The program should run as a Java application, not an appl et.

* |t should read in event files and output complete html files that can be loaded into Netscape,
Internet Explorer, etc.

User interaction
» The command-line interface should mimic the interaction shown on p.2 of the assignment
handout.

* It should offer default responses to all the questions. The default input file is"events.txt”, the
default starting date is today's date, the default output format is "table" and the default
filename will be "table.ntml" or "list.html", depending on the format chosen by the user.

* |f the user enters an improper response (bad date, non-existent file to read, etc.) you should
re-prompt until they enter something valid.

* |f the user chooses to output using afilename that already exists, your program should
slently overwrite the previousfile.

* After creating one schedule, your program should ask if the user wants to create another
schedule using the same event file. 'Y our program should not re-read the event file between
generating sucessive schedules.

* Once the user has generated al the schedules they desire from an event file, your program
should ask if they would like to read a new event file to generate schedules from.

Filereading

* Your program must handle al files that are properly formatted in accordance with the
specifications given on p. 2-3 of the handout. Please read the details there carefully to make
sure you handle the few allowable variations such things as upper or lower casein the days
strings, the optional URL, etc.

* Your program does not need to deal with incorrectly formatted files (those that are not proper
event files, contain invalid dates or times, are missing essential fields, etc.). Although it would
be nice to gracefully handle improper input and it would make your program more robust in
the long run, we will not expect it to do so and we will not test on malformed files.

* Blank lines or lines that have afirst character of # are comments and should be ignored.

* You may assume that each event will have a proper timeinterva (i.e. stop timeis after start
time) and no event can extend from one day into the next.

* You may assume that no events will overlap. Although it wouldn’'t matter for the list output,
constructing the table becomes quite messy if events have to occupy the same time dot on the
same day. However, one event can end at the exact time another event starts and that is not
considered overlap.

HTML output
* For both formats, the schedule should show one week's worth of events starting from the
user's chosen date.

* Note that the week does not aways start on Sunday, it can start on any day of the user's
choosing. If the user enters a starting date that is a Wednesday, the schedule will start there
and extend to the following Tuesday.

* All eventsthat fall during the week, both regular and one-time, should be included. Any one-
time events that occurred before or after that week are effectively ignored for this schedule.

* For thelist format, it should pretty much mimic the output shown on p.3.

—The days are listed chronologically.

—The events within the day are listed in time order.

—Thetimeinterval and event are printed, if present, the optional URL is attached asa
hyperlink anchored to the event name.

—The event nameis printed inits color.

—One-time events are printed in bold to distinguish them from regular events (or in some
way distinguished).

* For the table format, more variation is possible, but there are requirements that apply to al
programs:

—Thetimes go across the table chronologically.

—The table does not have afixed start & stop time. The first column should be the
beginning of the earliest event occurring in this week and the last column at the end of
the latest (you can round outward to multiples of an hour for start and stop if you like).

— The days are marked along the left side of the table.

—Each event should be drawn in abox positioned in the right place for its scheduled time
and sized to the event's duration. (you can round to 5-minute multiplesif you like).

—The box is colored with the event's color.

—The boxed text consists of the timeinterval, the name, and the optional URL asa
hyperlink anchored to the event name.

—One-time events are printed in bold to distinguish them from regular events (or in some
way distinguished.

Grading

The bulk of the score for this assignment comes from evaluating its functionality. Functionality
coversyour program's behavior from an external perspective. Without looking at the code, does
it work as expected? Thisis usualy tested via scripts to run your program through its paces and
determineif it correctly handles the requirements, including any specified error conditions.
Although figuring much less prominently in the grade, we also expect that your programs will
be cleanly written and easy to understand. 'Y our program should exhibit decent sensible coding
practice, such as appropriate algorithm choices, effective decomposition, no duplicated code, as
well as things such as appropriate commenting, well-chosen identifiers, consistent indentation
and capitalization, and most importantly, good object encapsulation. If your program failsto
work on any of the functionality tests and we go hunting in your source code to understand the
problem, how easy your codeisto understand will have alarge effect on our ability to give
partia credit.

Getting started

We have aclass directory on leland /usr/class/cs193]j/ where we will place materiasfor the
assignments. For thisassignment, there is a project directory hwl that contains the code for the
classeswe give you. Y ou want to make a copy of thedirectory (i.e.cp -r

[usr/cl ass/ cs193j/assi gnment s/ hwl ~) to get started. Thereisalso alink to this
directory from our web page. Y ou are welcome to build the project on the platform of your choice,
just be sure to leave alittle time to test it back on Ieland to make sure it works there too. No matter
where you do your development work, when done, you must be sure your project will compile and
run on the leland workstations. All assignments will be electronically submitted there and that is
where we will compile and test your project. All students (SITN, local, remote, or otherwise) will
use the same process to submit assignments.

Electronic submission

Our goal isan entirely paperless class, so you will not submit printouts, but instead use a
submit script to electronically deliver your entire project directory. Some advice— leave enough
time before the due time to run the submit script and deal with any submission problems. This
goestriple for those doing your work on another platform. Y ou will need time to move the files
over, recompile them on Solaris, re-test the code, remove the .classfiles, and submit. Y ou may
want to do atria run of compiling and submitting on Solaris in advance to become familiar with
the process and avoid last minute panic.

Late days

Refer to handout #1 or the web site policy page for the course policy on late work. If you are
choosing to use one of your self-granted extension days, you do not need to confirm with us,
just submit your work using the same process and it will be time-stamped accordingly.

Partners for CR/NC students

Those of you taking the course with the CR/NC grading option may work in pairs. Although
working with apartner won’t exactly cut the work in half, it will provide some relief and
companionship during the process. This seems appropriate for those of you who are taking this
class not for agrade or requirement, but just to learn the materia for yourself.

Y ou can work with only one partner on any one assignment, but you can switch partners
between assignments or do some assignments with a partner and others aone. If you work
with a partner, only one of you should e-submit the project, but include information about both
partnersin the README file. Y ou and your partner do not need to have the same TA grading
your work, just randomly pick one of you to do the submission and submit it to the TA who
grades that person. See the course directory for detailed instructions on how to submit.

HW1 Design ldeas

Therest of this handout is aroad map with suggestions about how to work through the first
homework project. It sketches out some strategies for how to break down the task at hand, the
classes to consider building, and some milestones to work toward in your design. Y ou can take our
ideas and implement them as we have suggested or choose a different path of your own.

Designing classes

An object-oriented program is decomposed into a number of cooperating classes. The handy thing
about OO programs s that the data structure can often cleanly model the real-world ideas being
represented. Asthe designer, your job isto determine what objects you are trying to model and
what sort of operations these objects perform. To define a class, you need to answer two
fundamental questions:

» What datais required to represent this object?
» What behavior will | need from this object?

The answers to these questions tell you what instance variables you need and what methods the
class must implement. Behavior that is associated with an object should be provided as a message
you can send to the object to ask it to perform some action, rather than having the client reach into
the object and muck around with itsdata. For example, aclient asks a Time object to find out
whether it is before another Time object. If you want an Event printed, you send amessage to that
Event object asking it to print itself.

To introduce you gently to this process, only afew ssimple classes are needed for this program.
These objects include the Time, Event, DailySchedule, and Datebook classes, along with afew

hel per-utility classes and routines. Each of the main classes has a pretty clear real-world analog to
help guide your design and the rel ationships between the classes are not too complex. Let's give
you an overview of each of the classes so you'll know how to proceed.

The Time class

First consider the Time class we used in lecture as our first smple object. It has the straightforward
job of representing a particular time in the day. In the starting project, we give you a primitive
version of this class, but you' Il need to further develop the class to be fully useful.

The Time classis your first opportunity to work through designing a useful and robust object with
asensible and complete interface. Carefully think through your decisions and make choices of
which you can be proud. It's not a very complex class, so it isagood one to tackle early, so you
have a smple introduction to designing and manipulating data in the object-oriented paradigm.

First, evaluate the current interface of the Time class. Isit missing important features? Does it have
unnecessary functionality you want to remove? Think through the rest of the program and what
operations you will need to manipulate times and plan to include them as methods for the Time
class. Fedl freeto remove any current methods that are redundant or unnecessary in your design.
Be sure to only make those things public which make sense as part of the Time's external interface
and which you are committed to supporting forever.

This Time object has the hour/minute/am representation that is intuitive and familiar, but it can be
awkward to manipulate in that form. What other representations might work? What are the
tradeoffsin terms of space and convenience of these other choices? Consider what operations are
easier for a given representation and which ones are more difficult. Think through these before
committing on your representation and then go forth and compl ete the implementation.

10

Instead of moving on, write some simple test code that exercises the Time class and allows you to
find and correct any problems now. Can you reliably create Times, message them, print them,
compare them, shift them, etc. using your operations and get the correct results? It's much easier to
isolate and fix bugs when you're just dealing with one class at atime than trying to sort out
everything at once when you have lumped everything together into abunch of untested classes.

One convenient place to put your test codeisin astatic mai n method on the classitself. You can
then compile and execute that classitself. Y ou don’'t even need to remove the testing code before
submitting unlessit realy interferes with the overall readability.

The Event class

Now consider the Event class. An Event object encapsulates all of the details for a particular
datebook entry. An Event needs to track its name, color, and url. All three of these fields can easily
be represented using Strings. An Event also needs to track its time interval and perhaps its date or
days and whether it isregular or one-time event. In truth, the Event classis not that much more
sophisticated than a C struct, but it servesto encapsulate the data into a clean abstract unit. A good
milestone to aim for before moving on from Event is that you are able to read the events from the
file, printing each out asread, to verify that the Event classis doing itsjob.

The Timelnterval class

Managing the time interval for an Event islittle more complex than the other simple String fields.

Y ou may want to create a hel per class, Timelnterval, just to encapsulate this concept. | chooseto do
so and | found it a helpful abstraction, but your mileage may vary. It is certainly possible to just
directly track the start time and duration in the Event object as an aternative.

Internally, a Timelnterval could storeits data as an array of two Times, one start, one stop, or
perhaps a starting Time object and duration. Or perhaps something else entirely. Wrestling with
these sorts of decisionsisthe most interesting part of designing aclass. Asaclient of the
Timelnterval, you don't care how it isinternally represented, al you care about is that you can get
the right results when you ask it to print and whether it starts before another Timelnterval and so
on. But as the implementor, how you choose to represent it can make quite a difference in terms of
ease of writing the code, the resulting efficiency, the size of the object, how difficult it isto modify
later, etc. In general, we encourage clean design and clearly written code that may be less efficient
over theterse, complicated aternatives that are produced in the name of efficiency.

The DailySchedule class

To manage dl the events scheduled on a particular day, you will create the DailySchedule class.
Because the number of eventsis not known in advance or constrained to any fixed size, an array is
not appropriate, you will need use some sort of resizable collection to store the events. The
javauutil.Vector class has been around since 1.0 days and handles asimple, linearly indexed
collection of objects. Java2 adds an entire family of new collections with more expansive and full-
featured alternatives. The new collections are covered extensively in your text and we will briefly
tour them in class, but since they rely on inheritance and interfaces, two concepts we won't cover
until later, we think you'll find it simplest if you stick with the ssimple Vector classfor this
assignment. However, if you want to read ahead and do some independent investigation, by all
means, you're welcome to use the newer facilities.

In order to facilitate orderly printing of the daily schedule, it is convenient to keep the vector of
events sorted by start time. The DailySchedule class will include functionality to add events and
print out the schedule in various formats. Writing this classis agood way to become familiar with
the basic workings of the using collection classes, Vector and itsilk are heavily used in Java
programming.

11

The Datebook class

And finally, you will create a Datebook class that tracks the schedules for all the various days. Y ou
will need to manage DailySchedules both for the regular events, as well as those odd one-time
events scattered throughout the datebook. For the regular events, you might want an array of
DailySchedules, one per day of the week. Those dates with one-time events will require their own
separate DailySchedules. It is expected that most dates won't have any one-time events scheduled
and thus, you should avoid wasteful storage. Rather than keep alarge array with many null
references or empty DailySchedules, you should create schedules only for those dates that have
one-time events. Using the Date objects as keys and the associated DailySchedul e object asthe
value will facilitate quick lookup of daily schedule by Date, and when no events have been
scheduled, the lookup will return null to show there are no one-time events scheduled for that day.
To associate a Date object with its DailySchedule, you will want to use one of the built-in key-value
"map" objects. The long-standing Hashtable class isthe easiest to make use of, so that iswhat we
recommend. The new collections offers some fancier aternatives that would require alittle more
effort on your part to pick up, but are also fine choicesto consider.

When you are printing out aweek’ s schedule, you will find that you need to display both the
regular events with any one-time events that occur during that week. There are several waysto
accomplish thistask, some easier than others. Y ou may want to think about it for a bit before

making your decision about how to handle it.

A good milestone at this point would be producing the list output, which is quite a bit smpler than
the table. Constructing the table will probably be the last task you complete for the program.

The built-in utility classes

In lecture and next week’ s section, we may briefly touch on the built-in utility classes, such as
String, StringTokenizer, Vector, Date, Hashtable and foreshadow a bit of the new Callections, but
we will not cover these classesin detail. Between your textbook and the on-line class specifications
(seelink from "Other materials’ on our web site), you have access to pretty solid documentation. In
generd, in this course, we will expect you to be fairly resourceful in researching features and usage
of the built-in classes (i.e. we are not going to use lecture time to painstakingly go through the
details of the standard Java classes). This assignment isagreat first step toward becoming familiar
with how to explore the Java packages on your own. Feel freeto ask questionsif you find the
documentation unclear.

A note about depr ecated: Since the Javalibraries are still evolving, you will notice at timesthe
compiler or documentation will indicate a method or classis “deprecated”. In moving from Java
1.0to 1.1 to 2, some methods and classes were replaced with different and improved means of
handling that functionality. The old classes/methods are till there but have been deprecated to
show that their use is discouraged and they will eventually be removed from the libraries. Asan
example, the Date class changed quite a bit and much of the original Date class has been deprecated
and replaced with facilities in the Calendar class. (There is more info about thisin Chapter 16 of
your text). We expect you to avoid using deprecated APl and instead use its replacement. Feel free
to ask if you need help sorting it out.

Some class design suggestions

A working program is definitely a good thing, but a truly worthwhile accomplishment is one that
also excelsin design and readability: isthe program sensibly divided into classes? Are the classes
themselves complete and clean? Do classes take care to maintain consistency and encapsulation of
the object state? Are the identifier names well chosen? Are complicated operations broken up in
hel per methods to manage complexity? Would you want to take over a project that had this asits
starting code base? Would you find it easy to extend the program to new functionality? ...

12

Most of you are experts on the usual CS106/CS107 style, decomposition, and commenting
standards. If you haven’t taken those courses here, check the "other materials' part of the web site
where | posted some style handouts from those courses that you might want to peruse.

Here' s some specific issues to consider and basic rules of thumb that we believein:

» All instance variables should be pr i vat e. An object should tightly encapsulate its data
and not alow outside access.

 If aclient will need access to another object's instance variable, the class can provide a
public accessor method (a"getter” such asl engt h() or get Lengt h()). However, be
wary about handing out referencesinto your internal data—e.g.. do you see why a stack
object shouldn't hand out areferenceto its Vector /array and have the client add el ements
toit? Instead the Stack can haveapush() method which takes the client's element and
addsit to the internal list itself.

» When needed, you can also provide a"setter” function for an instance variable. Be
careful about this, just because you have a private instance variable | engt h doesn't mean
you have to have amethod set Lengt h() . For that example, most likely the length is
changed as needed when elements are added or removed and shouldn't be externally
settable. Only include the setter if the client's use will require it and there is no better way
to provide that functionality. Take precautions in the setter function so that it cannot be
used malicioudly to corrupt the internal consistency of your object—i.e. don't allow a
client to change a count to a negative number or something that would cause your object
to get confused or misbehave.

* Most methodswill be publ i ¢, since they are usually intended for public use. However,
any helper methods only for use of the class implementor should be pri vat e.

» Giveresponsihility for behavior to the object itself rather than manipulating it using
setterg/getters from the outside. For example, you want to include methods in the class
which can construct a new object given its starting state or print the data out nicely rather
than having some other object stuff the datain field by field or extract the datato print it.

» You'll note that object decomposition leads to a different sort of code structuring than
you're used to. For example, in C, you would likely group al the printing functionsinto
one unit. In Java, each object takes responsibility for printing its own data, which will
have the effect of distributing the code for printing around various classes. This can bea
little disconcerting. Although object decomposition is an effective tool for managing
complex projects, this sort of consegquence is one of the downsidesto it.

» At times, you will encounter some code that doesn't fit into the object-oriented paradigm,
for example, consider the "main” code that handles the interaction with the user. Don't let
this get to you, sometimes the paradigm just doesn't quite fit the task. It's okay to add
static methods to a utility class to handle this. Just write the necessary methodsin agood
readable style and organize them sensibly.

