
Cs193j, Stanford Handout #8
Winter, 2002-03 Nick Parlante

Collections

Collections
Built-in classes for common storage problems (like the C++ Standard Template

Library (STL))
We'll look at basic features of the Collection classes now, and see more detail

later on
Collection type (sequence/set) -- ArrayList is the most useful
Map type (hash table/dictionary)-- HashMap is the most useful
They only store pointers
See the Sun docs: http://java.sun.com/docs/books/tutorial/collections/
The collection classes use inheritance and interfaces, but we are ignoring that for

now. We will just look at the basic uses of a collection classes.

Collection Design
As much as possible, all the various classes implement the same interface so they

use the same method names (e.g. add(), iterator(), ...), so you can substitute one
type of collection for another. This also makes it easier to learn, since the
method names are all consistent.

Only store pointers to elements
Can store pointers to objects such as Strings, but cannot store a primitive like

an int. If you need to store an int, use the wrapper class (Integer, Float, ...).
In the source code, collections store all pointers as type Object (like void*), so you

cast the pointer back to what it really is, such as String, when extracting the
pointer from the collection.

At runtime, java checks all casts, so a bad cast will be caught at that time.

Collection Messages
There are a few basic methods, and everything else is built on them.
constructor() -- collection with no elements

Actually, a Java interface cannot specify a ctor or static method, but all the
collection classes implement the default ctor at a minimum.

int size() -- number of elements in the collection
This could have been called getSize() or getLength(), but they kept the name

size() to remain compatible with the old Vector class.
boolean add(Object ptr)

Add a new pointer/element to the collection. Adds to the "end" for collections
that have an ordering. Returns true if the collection is modified (it might not
be when adding to a Set type collection).

iterator()
Return a new Iterator object set up to iterate through the collection and

possibly remove elements.



2

The iterator responds to...
-hasNext() -- returns true if more elements,
-next() returns the next element
-remove() -- removes the element returned by the previous call to next()
It is not valid to modify the collection directly while the iterator is iterating --

e.g. calling collection.add(), collection.remove(). It is valid to modify the
collection through the iterator -- iterator.remove().

Utilities -- these convenience methods are built on top of the basic methods above
boolean isEmpty()
boolean contains(Object o) -- iterative search -- uses equals() on the elements
boolean remove(Object o) -- iterative remove -- uses equals() on the elements
boolean addAll(Collection c) -- true if receiver changed
... and so on

ArrayList
Replaces the old "Vector" class -- like an array, but it can grow over time
add() -- add pointer to end of the collection
int size() -- number of elements
Object get(int index) -- retrieve the elem pointer, indexed (0..len-1) (not all

collections support this efficiently, but ArrayList does)
iterator() -- return an iterator object to iterate over the array list

Responds to hasNext(), next() and remove() as above

ArrayList Demo Code
/*
 The ArrayList is replaces the old Vector class.
 ArrayList implements the Collection interface, and also
 the more powerful List interface features as well.
 Main methods:add(), size(), get(i), iterator()
 See the "Collection" and "List" interfaces.
*/
public static void demoArrayList() {

ArrayList strings = new ArrayList();

// add things...
for (int i= 0; i<10; i++) {

// Make a String object out of the int
String numString = Integer.toString(i);
strings.add(numString); // add pointer to collection

}

// access the length
System.out.println("size:" + strings.size());

// ArrayList supports a for-loop access style...
// (the more general Collection does not support this)
for (int i=0; i<strings.size(); i++) {

String string = (String) strings.get(i);
// Note: cast the pointer to its actual class
System.out.println(string);

}



3

// ArrayList also supports the "iterator" style...
Iterator it = strings.iterator();
while (it.hasNext()) {

String string = (String) it.next(); // get and cast pointer
System.out.println(string);

}

// Call toString()
System.out.println("to string:" + strings.toString());

// Iterate through and remove elements
it = strings.iterator(); // get a new iterator (at the beginning again)
while (it.hasNext()) {

it.next(); // get pointer to elem
it.remove(); // remove the above elem

}

System.out.println("size:" + strings.size());

}
/* Output...

size:10
0
1
2
3
4
5
6
7
8
9
to string:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
size:0

*/


