
CS193j, Stanford Handout #15
Winter, 2002-03 Nick Parlante

Repaint
How Does a GUI Work?
Objects in memory, storing state as strings, ints pointers, ...
The System sends these objects paintComponent() and they drawthemslves on

screen
The user clicks, types, ... the system maps theses events to notification messages

sent to the objects. The objects react, changing their state, and ultimately draw
that new state on screen.

In this way, it appears to the user that their actions changed what's on screen.

paintComponent() -- System Driven
Wait for system to tell you to draw, what size, etc.
Do not just start drawing on your own, they way you would in a C program

Debugging paintComponent()
Put a call to g.drawRect(0,0,getWidth()-1, getHeight()-1) at the start of your

paintComponent() just to see where things are.
If nothing at all shows up, make sure the component is not width or height 0, and

has been added to the frame.
Make sure the prototype is exactly right, not paintCompomnent() or something.
Put a Toolkit.getDefaultToolkit().beep() to see if paintComponent() is getting

called at all
While a Swing program is running, type ctrl-shift-f1 to get a debugging printout

dump of the installed components

paintComponent()
Object state -> pixels, read only
What paintComponent() does: look a the state of the object, and draw the pixels

that represent that state. Do not change the state of the object.

2

Obect in memory -- has
assorted ivars: int, boolean
string, which collectively
define its current state. Some of
that state affects the appearance
on screen.

paintComponent()

Repaint -- Request a Redraw
90% of drawing is automatic
90% of the time, drawing is initiated automatically.
The programmers does not need to do anything at all -- the system notes these

cases automatically and does the drawing...
 Expose event-- a component used to be covered in the "z-order" stacking of

components, but now is not and needs to be redrawn
Resizing
Scrolling

We need repaint() for the cases where the system does not automatically know
that the components needs to be redrawn.

Redraw request: component.repaint();
Send the repaint() message to tell the system that the given component needs to

be redrawn. In other words, repaint() will cause the system to redraw the
component.

Asynchronous
component.repaint() does not do the drawing immediately.
The connection from repaint() to paintComponent() is indirect.
component.repaint() causes the system to note in its event queue that given

component needs a redraw.
A fraction of a second later, the system draw thread will dequeue the draw

request and ultimately send paintComponent() to the component.

Do Not call paintComponent()
It is almost never correct to call component.paintComponent()
Instead, call component.repaint(), and the system will schedule a

paintComponent() to happen soon

3

"Up To Date" Repaint Model
You can think of keeping the object state and its pixels on screen "in sync" --

redrawing the pixels when the state changes.
Object State

Each object in memory has lots of state : strings, pointers, booleans...
Some of that state affects the way the object appears on screen.

Pixels
The pixels on screen are a function of the object state

Out of date
A change to the object state makes the on-screen pixels out of date -- they are

the pixels from an earlier paintComponent() with the old object state.
State Change -> Repaint

When the object state changes, do a repaint() to trigger a paintComponent()
using the new object state.

Setter Repaint Pattern
Since repaints() tend to go with changes in the objects state, it's natural to put

them in the object's setter methods.

Face Repaint Example
Suppose we have a Face component that draws itself as a smiley face by default.
There is an "angry" boolean ivar -- when it is true, the face draws in red.

paintComponent() looks at the value of the angry ivar, and draws in the smiley
face in red if it is true.
// smiley -- draws in red if angry
public void paintComponent(Graphics g) {

if (angry) g.setColor(Color.red);
else g.setColor(Color.black);
// draw smiley

}

The setAngry() does a repaint() since the angry state is relevant to the appearance
-- classic use of repaint() in a setter to trigger the redraw.
public void setAngry(boolean angry)
{

this.angry = angry;
repaint();

}

Or to be a little slicker, we could detect if the new angry value is different from
the old. A redraw is only required if it's really different.
public void setAngry(boolean angry)
{

if (this.angry != angry) {
this.angry = angry;
repaint();

}
}

4

Work for Client NO / Work for receiver implementation YES
Some state is relevant to the appearance and some is not, but the client should

not need to know those details.
Do not make the client figure this out -- just hide the call to repaint() in the

appropriate setters.
This is another example of the sort of asymmetry you tend to see in good

client oriented design -- simple for the client, complex for the
implementation.

Repaint Bugs
It can be tempting to sprinkle repaint() calls all around -- resist the temptation.

Figure out the one or two places where repaint() is really needed.
With needless repaint() calls, the app will still appear to function, but it will be

slower than necessary.
What if the paintComponent() calls repaint()?

Repaint Example

5

// Widget.java
// Widget.java
/*
 A component that stores a number and draws it
 with a large font.
 Simple example of setter/repaint style.
*/
import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;

public class Widget extends JComponent {
private int count;

// static: one variable shared by all instances
// aka "singleton" pattern
private static Font font = null;

public Widget(int width, int height) {
super();
setPreferredSize(new Dimension(width, height));

count = 0;
}

/*
 Typical setter -- calls repaint() to alert the
 system that we need to be redrawn.
*/
public void setCount(int newCount) {

if (newCount!=count) {
count = newCount;
repaint();

}
}

public void increment() {
setCount(count+1);

}

/*
 Draw ourselves with a big font (see the Font class).
*/
public void paintComponent(Graphics g) {

// typical "debug rect" around our bounds just to have
// something show up
g.drawRect(0, 0, getWidth()-1, getHeight()-1);

// trick: lazy evaluation of font object
 // note: it's a static

if (font==null) font = new Font("DIALOG", Font.ITALIC, 96);

6

g.setFont(font);
g.setColor(Color.red);
// draw near the bottom
g.drawString(Integer.toString(count), 4, getHeight()-4);

}

// Boxer.java
// Boxer.java
/*
 Simple component that stores a count, and draws that number
 of boxes within its bounds.
 Also can store an Image object -- if non-null, draws the image
 behind the boxes.
 Demonstrates setter/repaint style.
*/
import java.awt.*;
import javax.swing.*;

class Boxer extends JComponent {
private int count; // number of boxes to draw

 private Image image; // image to draw (may be null)

Boxer(int width, int height) {
super();
setPreferredSize(new Dimension(width, height));

count = 1;
image = null;

}

/*
 Increases the count.
*/
public void increment() {

setCount(count+1);
}

/*
 Sets the count.
*/
public void setCount(int count) {
 // note: tricky case of param and ivar with same name

if (this.count != count) {
this.count = count;
repaint();

}
}

/*
 Installs an image for us to draw, or null
 to not draw an image.
*/

7

public void setImage(Image image) {
 this.image = image;
 repaint();
}

/*
 Draws the series of 1..count rectangles
*/
public void paintComponent(Graphics g) {

//super.paintComponent(g); // not necessary

int width = getWidth();
int height = getHeight();

// If the image is present, draw it first (behind everything)
if (image != null) {
 // drawImage() will scale the image to whatever size we say
 g.drawImage(image, 0, 0, width, height, this);
}

// Draw the series of rectangles
for (int i=0; i<count; i++) {

// note: do the running i/count computation with floats

// 0/10 1/10 2/10 ...
int rx = (int) ((float)width*i/(2*count));
int ry = (int) ((float)height*i/(2*count));

// 5/5 4/5 3/5...
int rWidth = (int) ((float)width*(count-i))/count;
int rHeight = (int) ((float)height*(count-i))/count;

g.drawRect(rx, ry, rWidth-1, rHeight-1);
}

g.setColor(Color.red);
g.drawString(Integer.toString(count), 20, 20);

}
}

// Repaint.java
// Repaint.java
/*
 Creates a frame containing a widget and boxer with
 controls wired up to them.
*/
import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;

public class Repaint extends JFrame {
private Widget widget;
private Boxer boxer;
private Image image;

8

public Repaint() {
super("Repaint");

// Put in a border layout
JComponent content = (JComponent) getContentPane();
content.setLayout(new BorderLayout());

// Make a north horizontal box layout
JPanel north = new JPanel();
north.setLayout(new BoxLayout(north, BoxLayout.X_AXIS));
content.add(north, BorderLayout.NORTH);

 // Put in a widget and some controls for it
 widget = new Widget(100, 100);

north.add(widget);

JButton button;

button = new JButton("Increment");
north.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

// note: we can access ivars of our "outer" object
widget.increment();

}
}

);

button = new JButton("Clear"); // note: re-using "button" var
north.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

widget.setCount(0);
}

}
);

// note: store slider as "final" variable so inner class
// can see it
final JSlider slider = new JSlider(0, 100, 0); // (min, max, current)
north.add(slider);

slider.addChangeListener(
new ChangeListener() {

public void stateChanged(ChangeEvent e) {
// note: can access final stack var "slider"
widget.setCount(slider.getValue());

}
}

);

// Create boxer in center with controls in a south panel

9

final Boxer boxer = new Boxer(200,200);
content.add(boxer, BorderLayout.CENTER);

JPanel south = new JPanel();
content.add(south, BorderLayout.SOUTH);

JSlider slider2 = new JSlider(0, 100, 0);
south.add(slider2);

slider2.addChangeListener(
new ChangeListener() {

public void stateChanged(ChangeEvent e) {
// note: another way to get a pointer to the source
JSlider s = (JSlider) e.getSource();
boxer.setCount(s.getValue());

}
}

);

final JCheckBox imageMode = new JCheckBox("Background image");
south.add(imageMode);
imageMode.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {
 if (imageMode.isSelected()) {
 // load image if not loaded already
 if (image==null) image = loadImage("jeffsad.jpg");

 boxer.setImage(image);
 }
 else boxer.setImage(null);
}

}
);

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();
setVisible(true);

}

/*
 This is the standard code to load an image --
 it's complicated because getImage() returns
 before the image is actually loaded. The ImageObserver
 stuff is required to wait for the image to
 actually load. Bad design: making the obvious case
 hard on the client to support some advanced feature.

 In Java1.4, just use ImageIO.readImage(new File(filename))
*/
public Image loadImage(String filename) {

// Give us an Image object pointing to the given file
// (does not load the image synchronously)
Image image = Toolkit.getDefaultToolkit().getImage(filename);

// This incantation causes the loading of the image

10

// to actually happen -- we block while it does.
// If the image is not available, this just
// falls through silently.
MediaTracker tracker = new MediaTracker(this);
tracker.addImage(image, 0);
try{

tracker.waitForID(0);
}
catch (InterruptedException e) {

e.printStackTrace();
}

return(image);
}

Drawing Misc.
Erasing
We don't actively erase things.
To "erase" something, we just don't draw it in paintComponent(), and so it

disappears.
When calling paintComponent(), the system starts with an erased canvas, and

draws the components back to front. To make something disappear -- just don't
draw it.

Fish With hat

Fish Without hat (the hat has been "erased")

11

Fish class...
void paintComponent() {

// draw fish body
if (hasHat) // draw the hat

}

void setHat(boolean hat) {
hasHat = hat;
repaint();

}

Scenario: fish.hasHat is true. Send fish.setHat(false) -- the hat disappears.

Boxer Example -- the Boxer draws the image if the image ivar is not null. To erase
the image, set the image ivar to null and repaint. This triggers a
paintComponent() which, since the image ivar is null, doesn't draw the image,
and so it disappears.

Smart Repaint
Smart repaint = repaint just the rectangle of the component that needs to be

redrawn, not the entire component or window bounds.
This makes the following draw cycle faster, so we get faster, smoother drawing.

This can be quite a speedup, if the smart repaint rectangle is significantly
smaller.

There's a version of the repaint() method that takes a rectangle argument, and
just repaints that rectangle (rather than the component bounds) --
component.repaint(x, y, width, height)

e.g. -- just repaint the old+new rectangles when a component moves.
The system gets this right automatically when moving components around with,

say, a JPanel. See the setBounds() source code -- repaints just the old+new
regions.

