
CS193j, Stanford Handout #16
Winter, 2002-03 Nick Parlante

Mouse Tracking
Use MouseListener MouseMotionListener to get notifications about mouse

events over a component.
The component itself is the source of the notifications -- add the listener to the

component.

Listener vs. Adapter Style
Problem

Listener has a bunch of abstract methods -- e.g. 5 in MouseListener.
You typically only care about one or two, so implementing all 5 is a bore.

Solution
"Adpater" class has empty { } definitions of all the methods
Then you only need to implement the ones you care about -- the adapter

catches the others.
Bug

If you type the prototype slightly wrong, your method will be ignored -- e.g.
MousePressed() instead of the correct mousePressed()

MouseListener Interface
public interface MouseListener extends EventListener {

 /**
 * Invoked when the mouse has been clicked on a component.
 (press+release)
 */
 public void mouseClicked(MouseEvent e);

 /**
 * Invoked when a mouse button has been pressed on a component.
 */
 public void mousePressed(MouseEvent e);

 /**
 * Invoked when a mouse button has been released on a component.
 */
 public void mouseReleased(MouseEvent e);

 /**
 * Invoked when the mouse enters a component.
 */
 public void mouseEntered(MouseEvent e);

 /**
 * Invoked when the mouse exits a component.
 */
 public void mouseExited(MouseEvent e);
}

2

Mouse Adapter Class
public abstract class MouseAdapter implements MouseListener {
 /**
 * Invoked when the mouse has been clicked on a component.
 */
 public void mouseClicked(MouseEvent e) {}

 /**
 * Invoked when a mouse button has been pressed on a component.
 */
 public void mousePressed(MouseEvent e) {}

 /**
 * Invoked when a mouse button has been released on a component.
 */
 public void mouseReleased(MouseEvent e) {}

 /**
 * Invoked when the mouse enters a component.
 */
 public void mouseEntered(MouseEvent e) {}

 /**
 * Invoked when the mouse exits a component.
 */
 public void mouseExited(MouseEvent e) {}
}

Press : MouseListener
How to hear about a mouse press on a component...

component.addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent e) {

// called when mouse button first pressed on component

Motion: MouseMotionListener
How to hear about a mouse gesture with mouse button held down...

component.addMouseMotionListener(new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

// called as mouse is dragged, after initial click

JComponent = source
The JComponent where the click began is the "source" object for the mouse

events. Register with the component to hear about clicks on it.

Local Co-Ords
Notifications about the mouse event will use the local co-ord system of the

component where they happened. (This is similar to the way paintComponent()
works -- using the local co-ord system.)

The "delta" rule for mouse motion
Wrong: absolute

3

Use the current co-ords of the mouse--
Set the position of whatever it is to those co-ords

Right: relative
Get the current co-ords
Compare the last co-ords
Apply that delta to whatever it is

Test case
Aclick-release with no motion should not change any state -- relative mouse

tracking gets this right.

DotPanel Example

// DotPanel.java
/**
 The DotPanel class demonstrates a few things...

 -Mouse tracking -- clicking makes a new point, clicking
 on an existing point moves it. The data model is the collection
 of points where there is a dot on screen.

 -Smart repaint -- only repaints the needed rectangle when a dot moves

*/

import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.*;
import java.beans.*;
import java.io.*;

4

class DotPanel extends JPanel {
private ArrayList dots; // represent each dot by its center point
public final int SIZE = 20; // diameter of one dot

// remember the last point for mouse tracking
private int lastX, lastY;
private Point lastPoint;

public boolean smartRepaint = true;

 // we'll use this later
 // dirty = changed from disk version

private boolean dirty;

/**
 Utility test-main creates a DotPanel in a window.
*/
public static void main(String[] args) {

JFrame frame = new JFrame("Dot Panel");

JComponent container = (JComponent) frame.getContentPane();

DotPanel dotPanel = new DotPanel(300, 300, null);

container.add(dotPanel);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.pack();
frame.setVisible(true);

}

/**
 Create an empty DotPanel. Load the contents of the
 given File if it is non-null.
*/
public DotPanel(int width, int height, File file) {

super();
setPreferredSize(new Dimension(width, height));
setOpaque(true);
setBackground(Color.white);

dirty = false;
dots = new ArrayList();

if (file != null) {
load(file);

}

5

/*
 Mouse Strategy:
 -if the click is not on an existing dot, then make a dot
 -note where the first click is into lastX, lastY
 -then in MouseMotion: compute the delta of this position
 vs. the last
 -Use the delta to change things (not the abs coordinates)
*/

addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent e) {

//System.out.println("press:" + e.getX() + " " + e.getY());

Point point = findDot(e.getX(), e.getY());
if (point == null) { // make a dot if nothing there

point = addDot(e.getX(), e.getY());
}

// Note the starting setup to compute deltas later
lastPoint = point;
lastX = e.getX();
lastY = e.getY();

}
});

addMouseMotionListener(new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

//System.out.println("drag:" + e.getX() + " " + e.getY());

if (lastPoint != null) {
// compute delta from last point
int dx = e.getX()-lastX;
int dy = e.getY()-lastY;
lastX = e.getX();
lastY = e.getY();

// apply the delta to that point
moveDot(lastPoint, dx, dy);

}
}

});

}

/**
 Generates a repaint for the rect around one dot
 smart: repaint the rect just around the dot
 standard: repaint the whole panel
*/
public void repaintDot(Point point) {

if (smartRepaint) {
repaint(point.x-SIZE/2, point.y-SIZE/2, SIZE, SIZE);

}
else {

repaint();
}

6

}

/**
 Moves a dot from one place to another.
 Trick: needs to repaint both the old and new locations
 Moving components get this right automatically --
 see component.setBounds().
*/
public void moveDot(Point point, int dx, int dy) {

repaintDot(point); // repaint its old rectangle
point.x += dx;
point.y += dy;
repaintDot(point); // repaint its new rectangle

setDirty(true);
}

/**
 Private utility -- adds a dot to the data model.
*/
private Point addDot(int x, int y) {

Point point = new Point(x, y);
dots.add(point);
repaintDot(point);

setDirty(true);

return(point);
}

/**
 Finds a dot in the data model that contains
 the given point, or return null.
*/
public Point findDot(int x, int y) {

Iterator it = dots.iterator();
while (it.hasNext()) {

Point point = (Point)it.next();
int left = point.x-SIZE/2;
int top = point.y-SIZE/2;
if (left<=x && x<left+SIZE &&

top<=y && y<top+SIZE) {
return(point);

}
}
return(null);

}

7

/**
 Standard override -- draws all the dots.
*/
public void paintComponent(Graphics g) {

// As a JPanel subclass we need call super.paintComponent()
// so JPanel will draw the background for us.
super.paintComponent(g);

Iterator it = dots.iterator();

// standard draw: just iterate through and draw them all.
while (it.hasNext()) {

Point point = (Point)it.next();
g.fillOval(point.x - SIZE/2, point.y-SIZE/2, SIZE, SIZE);

}

}

