
CS193j, Stanford Handout #17
Winter, 2002-03 Nick Parlante

Advanced Drawing
JComponent vs. JPanel
Simple component that just draws itself

Subclass off JComponent, don't need to call super.paintComponent().
Component that draws every pixel in its bounds (is opaque)

Subclass off JPanel
setBackground() as needed to get an automatic background color
setOpaque(true) -- tells the system to not bother drawing what's behind us,

since we are drawing every pixel
Call super.paintComponent() from paintComponent()
The Graphics will be erased to the background color

Clipping
System sets a "clipping region" on the Graphics object before sending

paintComponent().
The clipping region affects all drawing operations on the graphics objects --

drawing operations that fall outside the clipping region do not set any pixels.
By default, the clipping region is the bounds of the component, so the component

does not draw outside its bounds.
For basic drawing, a component does not need to pay an explicit attention to the

clipping region. The component just draws what it wants, and any drawing
commands that fall outside the clipping region will be clipped automatically.

The system can use the clipping region to optimize the drawing in cases we will
see later.

component.getGraphics() -- NO
Almost always incorrect to use this
Only getGraphics() if the assignment handout specifically says to
getGraphics() goes against the system/paintComponent paradigm

Repaint Details
1. Repaint -- region to draw
Repaint() tells the system that an area on screen needs to be redrawn
Repaint() is sent to a component, but the command to draw is translated to a

region -- typically the bounds of that component.
component.repaint() -- specifies the entire bounds of that component
component.repaint(<rectangle>) -- specifies a sub rectangle inside the component

2

2. Repaint -> Update Region
The system maintains a global "update region" -- a 2-d representation of areas

that need to be redrawn.
Repaint -> adds a region to the update region

3. System paint thread
1. Notices non-empty update region
2. Compute intersection of that region vs. components
3. Initiates draw recursion down the component nesting hierarchy. Composites

the pixels together back-to-front.

Region Based Drawing
The need to draw something is always expressed in terms of regions of pixels,

not just components.
This scheme deals with intersection and z-order correctly

Overlap
Draw all the components that intersect the pixel region that needs to be redrawn.
Draw the components from back to front.

Move Component -> old+new

old

new

Suppose we have a component in front of a smiley face. The component moves to
a new position to the right-- What needs to be redrawn?

3

Both the old region and the new region of the component -- the old region needs
to be drawn with the component not there.

Smart Repaint
Smart repaint = repaint just the rectangle of the component that needs to be

redrawn, not the entire component or window bounds.
This makes the following draw cycle faster, so we get faster, smoother drawing.

This can be quite a speedup, if the smart repaint rectangle is significantly
smaller.

There's a version of the repaint() method that takes a rectangle argument, and
just repaints that rectangle (rather than the component bounds) --
component.repaint(x, y, width, height)

e.g. -- just repaint the old+new rectangles when a component moves.
The system gets this right automatically when moving components around with,

say, a JPanel. See the setBounds() source code -- repaints just the old+new
regions.

Coalescing
Using repaint() to make redraw requests gives us the advantage of "coalescing" --

intelligently combining multiple repaint() requests into a single draw
operation.

There is not a 1-1 correspondence between repaint() and paintComponent() --
mulitple repaints are coalesced by the system and handled by a single
paintComponent().

Time: Multiple repaint requests for a region in quick succession are "coalesced"
into one draw operation. You can repaint() 3 times in succession, but it just
draws once.

Space: repaint regions can overlap, but the area of intersection is just drawn once.

Coalescing Example - JSlider
Consider the JSlider/MyComponent example
When the JSlider moves, it sends a setCount() to the widget, which does a

repaint()
Suppose we move the slider quickly -- generating three setCounts(), 10, 11, 12, 13

in quick succession, resulting in 4 repaint() calls.
This does not mean we need to draw the MyComponent 4 times. If we did, all

but the last would just be overwritten anyway -- a complete waste.
The 4 repaints() can be coalesced into a single draw, if they are close enough

together in realtime.

4

Blinking Animation
Animation steps
The drawing process will have to go through something like the following three

states...
1. Old appearance on screen
2. Erase back to background
3. Draw new appearance

May be several steps here as we composite together several components back
to front.

Problem: Blinking
Blinking

Get blinking if "erased" state is shown on screen
Shimmering

If the redraw is really fast, it may look more like a "shimmer" of vibration, but
it's still not good.

Solution : Double Buffering
Offscreen Buffer

Build a pixel buffer offscreen
1. Old appearance (as before)
2. Erase offscreen buffer
3. Draw new appearance to offscreen buffer

As before, there may be several steps here as we composite together several
components back to front.

4. CopyBits (aka "Blit")
Copy the pixels for the new appearance from the buffer onto the screen.
It looks smooth because the "erased" state is never on screen -- on screen we

move right from old to new.
Also, the CopyBits primitive is highly optimized.

 Swing
Swing double buffers automatically -- all JComponent drawing goes through

an offscreen buffer.
JComponents draw to an offscreen buffer -- that's what the "g" passed in

points to
That's why tetris looks smooth even with our simple drawing strategy (draw

the whole board as the piece falls)

Inside Repaint 2
Smart Repaint -- smaller region
Smart repaint: component.repaint(rect) -- just redraw the given sub-rect of the

component.

5

e.g. Tetris falling piece. Don't redraw the whole board, just request the region
where the falling piece is.

Smart repaint implementation
1. Start with a region to redraw, but now its smaller
2. Find intersection components (as before)
3. Allocate an offscreen bitmap -- but exactly the size of the (small) update region.
4. Set up the origin and clip of Graphics g, to point to the small buffer.
5. Call the drawing recursion as usual, the components draw into the small

offscreen buffer. Drawing outside the buffer is clipped, but the components
don't need to be aware of that.

6. CopyBits the small buffer to the screen when done -- this can be much faster if
the buffer is much smaller than the whole bounds. The number of bytes to
move is just a lot smaller.

Tetris Example
The OPTIMIZE constant in JTetris controls this feature in the code I gave you.

When moving a piece, does it repaint the whole board, or just the small area
around the piece. A huge speedup.

Conclusion
repaint(rect) to redraw just an area of the component can be a lot faster.
The client components can be unaware of the sophisticated drawing that's going

on. They just obey the paintComponent()/repaint() contract.

repaint(x, y, width, height)
Call to redraw just a sub-rectangle of a component
The system is smart about using an offscreen buffer of just the size needed --

great potential speedup.
Theme: with a little cooperation from the client side, the JComponent system can

do quite sophisticated drawing.

Example 1
Suppose there's a circle and a rectangle. We're changing the circle so it is filled

with a pattern.

6

1. State change -> Repaint -> Update
region
Change the state of the circle to pattern=true.
Repaint just around the circle.
This adds the square shown to the update region

2. Offscreen Drawing
A little later, the draw thread notices the non-empty update region
Draw thread creates an offscreen buffer just the size of the update region.
Notice, for example, how many fewer pixels need to be erased compared to

redrawing the whole component -- potentially huge speedup.
Clipping is set around the buffer, so drawing outside of there has no effect (and

is fast).
The draw thread sends paintComponent() to the components to draw themselves

back to front. Only the parts that intersect the update region actually draw.

3. Copy Bits
Once everything has drawn the buffer, the draw thread copies the buffer back

onscreen with one fast copybits operation ("blit") and deletes the buffer.

7

Example #2
 Basically the same thing, but moving the circle instead of filling it with a pattern.

Moving something requires two repaints -- one for its old rectangle and one for
its new rectangle.

The update region is smart about "unioning" the two rectangles together to make
one enclosing rectangle.

1. Repaint x 2
Move the circle down
Repaint its old and new rectangles

8

2. Offscreen Drawing

3. Copybits

