
CS193j, Stanford Handout #18
Winter, 2002-03 Nick Parlante

Objects and Serialization

Equals
boolean equals(Object other)
vs ==

For objects, a == b tests if a and b are the same pointer
"shallow" semantics

boolean Object.equals(Object other)
defined up in the Object class, does a (this == other) test -- still shallow

semantics
Override

A class may override equals() to provide "deep" comparison semantics -- do
the two objects represent the same state?

e.g. String overrides equals()

Calling equals()
{

String a = "hello";
String b = "hello";

(a == b) ==> false
(a.equals(b)) ==> true

}

equals() strategy
boolean equals(Object other) { ...
Take Object argument, return boolean -- must have the exact same prototype as

the version up in Object for overriding to work.
Return true on (this == other)
Use (other instanceof Foo) to test class of other -- false if not same class

(instanceof returns false on null ptrs)
Otherwise do a field by field comparison of this and other

Student equals()
// in Student class...

boolean equals(Object obj) {
if (obj == this) return(true);
if (!(obj instanceof Student)) return(false);
Student other = (Student)obj;
return(other.units == units)

}



2

Clone
Goal: create a "copy" of an object
Given "foo" obj of class Foo, copy = foo.clone().
Copy has same state as foo, but its own memory. Probably foo.equals(copy)

Cloneable interface
Used as a marker that the class implements the clone() message
Not compiler enforced
Object.clone() is pre-built to (a) create a new instance of the right class, and (b)

assign all the fields over with '=' semantics.
Object.clone() gives this default behavior if the class implements the Cloneable

interface. Otherwise it throws an exception.

Implementing Clone
Implement the Cloneable interface
1. copy = (Class) super.clone() first (must use try/catch in case the clone() fails)
2. copy the fields where a simple '=' is not deep enough

Alternatives
Copy Constructor -- Foo(Foo x) -- construct a new instance of Foo, based on the

state of an existing foo.
"Factory" method -- static method that makes new instances. May use ctors

internally... static Foo Foo.newInstance(Foo x)
Advantage: simpler than clone(). Does not require extra concepts, since we

already understand ctors.
Disadvantage: the client must know the class of the object. In contrast, a client

can send x.clone() and get a copy without knowing the precise class of x.

Eq Code Example
// Eq.java
/*
 Demonstrates a simple class that defines equals and clone.
*/
public class Eq implements Cloneable {

private int a;
private int[] values;

public Eq(int init) {
a = init;
values = new int[10];

}

/*
 Does a "deep" compare of this vs. the other object.
*/
public boolean equals(Object other) {

if (other == this) return(true);
if (!(other instanceof Eq)) return(false);



3

Eq e = (Eq) other;

// now test if this vs. e
if (a != e.a) return(false);

if (values.length != e.values.length) return(false);
for (int i=0; i<values.length; i++) {

if (values[i] != e.values[i]) return(false);
}
return(true);

}

/*
 Returns a deep copy of the object.
*/
public Object clone() {

try {
// first, this creats the new memory and does '=' on all fields
Eq copy = (Eq)super.clone();

// copy the array over -- arrays respond to clone() themselves
copy.values = (int[]) values.clone();
return(copy);

}
catch (CloneNotSupportedException e) {

return(null);
}

}

public static void main(String[] args) {
Eq x = new Eq(1);
Eq y = new Eq(2);
Eq z = (Eq) x.clone();

System.out.println("x == z" + (x==z)); // false
System.out.println("x.equals(z)" + (x.equals(z))); // true

}
}

Serializing
Boring object <-> file problem
Serialization -- somewhat automatic
Serializable interface
To write out an object

ObjectOutputStream out;
out.writeObject(obj);

To read that object back in
ObjectInputStream in;
obj = in.readObject();

Same type
When reading, cast back to what it was when written



4

Serialization / Archiving
State in memory -- objects
Write objects to streamed state

To a disk file, or across the network, or to the system clipboard
The notion of "address space" does not hold in the streamed form -- there are

no pointers.
Read

Read the streamed form, and re-create the object in memory
Synonyms

Flattening
Streaming
Dehydrate (Rehydrate = read)
Archiving

106a      Memory<->Disk
Translate back and forth by hand
Typically use an ASCII text format

Custom arrangement between your data structures and some ASCII format
for reading and writing.

Java      Automatic Serialization
Serializable interface

By implementing this interface, a class declares that it is willing to be
read/written by the automatic serialization machinery.

Automatic Writing
Automatically writes out fields inside an object
The system knows how to recursively write out the state of an object
Recursively follows pointers and writes those objects out too

Built-Ins
Most built ins know how to serialize: int, array, Point, ...

"transient" fields -- do not serialize
Use to prevent the serialization from recurring down a branch you do not

want written to disk. Comes back as null after reading.
Override: readObject(), writeObject() -- to put in more customized

reading/writing
Versioning

serialization can detect version changes when reading and refuse to read if
the code for a written out object has changed since it was written out.
Programmer can control this.

ObjectOutputStream out;
out.writeObject(obj)
This one line calls the automatic serialization machinery to write out everything

rooted at the given object.
Classes



5

Each written object will be identified by its class -- the reading code will need
those same classes to read the stream.

Array
For a collection of things, it may be easier to cast the whole thing into a single

array that can be written in one operation.
Transient

Fields should be declared transient if they should not be written. They will
read back in as null.

ObjectInputStream in;

in.readObject()
CT type

Read back with the same CT type it was written (Object[] or DShapeModel[])
Class

If a class was written that is not present at read-time, there will be an error.
If the class has the same name but a changed implementation there will be an

error.
It's safest to serialize classes that are stable everywhere such as Array and

Point
Do not change the structure of DShapeModel, or you will not be able to open

old files

Circularity : Solved
The automatic machinery takes care of the case where the pointer graph of

objects being written out has pointers in to itself. The read operation correctly
re-creates the pointer graph in memory. (yay!)

Dots example...
Our earlier Dots example had an ArrayList of Point objects.
Here's how it would write itself out...

/**
 Given a file, write the data model to it with Java serialization.
 Makes an Point[] array of points and writes it
 which avoids the bother of iteration.
 (We use an array instead of the ArrayList to avoid
 requiring a 1.2 VM to read the file, although maybe
 the ArrayList would have been fine.)
*/
public void saveSerial(File file)  {

try {
ObjectOutputStream out = new ObjectOutputStream(

new FileOutputStream(file));

// Use the standard collection -> array util
// (the Point[0] tells it what type of array to return)



6

Point[] points = (Point[]) dots.toArray(new Point[0]);

out.writeObject(points); //  serialization!

out.close(); // polite to close on the way out
setDirty(false);

}
catch (Exception e) {

e.printStackTrace();
}

}

/**
 Inverse of saveSerial.
 Reads an Point[] array of Points, and adds
 them to our data model.
*/
private void loadSerial(File file)  {

try {
ObjectInputStream in = new ObjectInputStream(new FileInputStream(file));

// Read in the object -- the CT type should be exactly as it was written
// -- Point[] in this case.
// Transient fields would be null.
Point[] points =  (Point[])in.readObject();

for (int i=0; i<points.length; i++) {
dots.add(points[i]);

}

in.close(); // polite to close on the way out
setDirty(false);

}

catch (Exception e) {
e.printStackTrace();

}
}

193j Classes
For hw2, we have wrapper classes that shield you from the exceptions, but

otherwise behave like ObjectOutputStream and ObjectInputStream
SimpleObjectWriter w;

SimpleObjectWriter w = SimpleObjectWriter.openFileForWriting(filename);
w.writeObject( <object>) -- write an array or object (Point[] in above example)
w.close()

SimpleObjectReader r;
SimpleObjectReader r = SimpleObjectReader.openFileForReading(filename);
obj = r.readObject() -- returns the object written -- cast to what it is (Point [] in

above example)
r.close()


