
February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

CS193J: Programming in Java
Winter Quarter 2003

MVC/JTable, Exceptions and Files

Manu Kumar
sneaker@stanford.edu

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Agenda

• Last Time:
– Threading continued (wait/notify)

• Today:
– CS193J Tips and Tricks
– MVC

• Model View Controller paradigm
• JTable

– Exceptions
– Files and Streams

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Handouts

• 4 Handouts for today!
– #23: Homework #3 Part B
– #24: MVC/Tables
– #25: Exceptions
– #26: Files and Streams

• Homework #3 (Part a and b) tips
– This homework is not short
– Start early

• Threading/Concurrency bugs are the hardest bugs
you will ever encounter!

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

While we’re talking about tips…

• Some random tips to help you
– Syntax highlighting in emacs

• If you use emacs in an X environment, you can turn on
syntax highlighting under the Options menu

– VNC is your friend
• Leland has the VNC Server installed on it already!
• Download and installed VNC Client from

http://www.realvnc.com
– System.out.println() is your life-saver!

• When debugging, always create utility methods to dump your
object state and use System.out.println() to be able to view it

• When using Threads –output the thread name
(Thread.getName() method) so that you know which thread is
active

http://www.realvnc.com/

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Homework #3 Part b intuition

• How many of you have not used
Napster/Kazaa/Bearshare! ☺
– The interface HW3 presents for checking links is reminiscent of

how P2P filesharing clients download files.

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

MVC

• MVC paradigm
– Model

• Data storage, no presentation elements
– View

• No data storage, presentation elements
– Controller

• Glue to tie the Model and the view together

• Motivation
– Provides for a good way to partition work and create a

modular design
– Very flexible paradigm for providing multiple ways to

look at the same information

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Rudimentary MVC diagram

View1 View2 View3

Controller

Model`

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Sun’s MVC Pattern Diagram

Stolen from a presentation by DChen @ Sun

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Tables in Swing

• Tables are one of the more involved UI
elements in Swing
– Basic functionality however it easy
– Learn by pattern matching!

• Resources:
– Handout has lots of sample code

• Source for the code in the handout is available in
electronic form on the course website

– Sun’s Java Tutorial on How to Use Tables
• http://java.sun.com/docs/books/tutorial/uiswing/co

mponents/table.html

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Tables in Swing

• Use MVC pattern!
– Model: TableModel
– View: JTable
– Controller: UI elements and listener bindings

• JTable
– Relies on a TableModel for storage
– Has lots of features to display tabular data

• TableModel Interface
– getValueAt(), setValueAt(), getRowCount(),

getColumnCount() etc.
• TableModelListener Interface

– tableChanged(TableModelEvent e)

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

AbstractTableModel

• Implements common functionality for
TableModel Interface
– But it is abstract, so you must extend it

• getRowCount(), getColumnCount(), getValueAt()
– Helper methods for things not directly related

to storage
• addTableModelListener(), fire___Changed()

• DefaultTableModel
– Extends AbstractModel, but uses a Vector

implementation

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

BasicTableModel

• Provided by Nick
– Uses ArrayList implementation
– getValueAt() to access data
– setValueAt() to change data

• Notifies of changes by sending fireTable____()
methods

– Handles listeners
• This is what you should follow!

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Live Example!

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Table Tips!

• Put the JTable in a JScrollPane
– This automatically deals with handling space for the

header and does the right things!
• To change column widths

TableColumn column = null;
for (int i = 0; i < 5; i++) {

column = table.getColumnModel().getColumn(i);
if (i == 2) {

column.setPreferredWidth(100); //second column is bigger
} else {
column.setPreferredWidth(50);
}

}

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Exceptions

• You’ve seen these already!
– So you already have some intuition about

these
• Exceptions

– Are for handling errors
– Example:

• ArrayIndexOutOfBoundsException
• NullPointerExeption
• CloneNotSupportedException

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Error-Handling

• Programming has two main tasks
– Do the main computation or task at hand
– Handle exceptional (rare) failure conditions that may

arise
• Bulletproofing

– Term used to make sure your program can handle all
kinds of error conditions

• Warning
– Since error handling code is not executed very often,

it is likely that it will have lots of errors in it!

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Traditional Approach to Error Handling

• Main computation and error handling code
are mixed together
int error = foo(a, &b)
If (error = 0) { ….}

• Problems
– Spaghetti code – less readable
– Error codes, values have to be manually

passed back to calling methods so that the
top level caller can do something graceful

– Compiler does not provide any support for
error handling

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

The Java Way: Exceptions

• Formalize and separate error handling
from main code in a structured way
– Compiler is aware of these “exceptions”
– Easier to read since it is possible to look at

main code, and look at error cases
– Possible to pass errors gracefully up the

calling hierarchy to be handled at the
appropriate level

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Exception Classes

• Throwable
– Superclass for all exceptions

• Two main types of exceptions
– Exception

• This is something the caller/programmer should know about
and handle

• Must be declared in a throws clause

– RuntimeException
• Subclass of exception
• Does not need to be declated in a throws clause
• Usually reserved for things which the caller cannot do

anything and therefore also usually fatal.

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Exception Subclasses

• Exceptions are organized in a hierarchy
– Subclasses are most specific
– Higher level exceptions are less specific

• You can create your own subclasses of
exceptions which are application specific
– Rule of thumb: if your client code will need to

distinguish a particular error and do
something special, create a new exception
subclass, otherwise, just use existing classes.

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Methods with Exceptions

• Exception throw
– throw can be used to signal an exception at

runtime
• Method throws

– When a method does something that can
result in an error, it should declare throws in
the method declaration

public void fileRead(String f) throws IOException {
….
}

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

“Handling” Exceptions

• Two possible options
– Pass-the-buck-approach

• Declare the exception in a throws
• This passes the exception along to the caller to

handle
– Do-Something-approach

• Use try-catch block to test if an exception can
happen and then so something useful

• Which one to use:
– Depends on the application!

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

try / catch

• Idea:
– “try” to do something
– If it fails “catch” the exception
– Do something appropriate to deal with the error

• Note:
– A try may have multiple catches!

• Depending upon the different types of exceptions that can be
thrown by all the statements inside a try block

– Exceptions are tested in the same order as the catch
blocks

• Important when dealing with exceptions that have a
superclass-subclass relationship

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

try / catch example

public void fileRead(String fname) { // NOTE no throws

try {
// this is the standard way to read a text file...
FileReader reader = new FileReader(new File(fname));
BufferedReader in = new BufferedReader(reader);

String line;
while ((line = in.readLine()) != null) {

...
// readLine() etc. can fail in various ways with
// an IOException }

}
// Control jumps to the catch clause on an exception
catch (IOException e) {

// a simple handling strategy -- see below for better strategies
e.printStackTrace();

}
}

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

printStackTrace() is your friend!

• When dealing with exceptions
• Especially when debugging
• printStackTrace() will:

– Show you the full calling history
– With line numbers

• Note:
– Bad idea to eat an exception silently!
– Either printStackTrace() or pass it along to be

handled at a different level

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Files and Streams

• File
– Represents a file or directory
– Java abstracts away the ugliness of dealing

with files quite nicely
• Streams

– Way to deal with input and output
– A useful abstraction…

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Streams!??

• Water analogy
– Think of streams as pipes for water
– Do you know whether the water that comes out of

your tap is coming from a) the ocean b) some river c)
a water tank d) a water buffalo?

• Idea:
– You abstract away what the stream is connected to

and perform all your I/O operations on the stream
– The stream may be connected to a file on a floppy, a

file on a hard disk, a network connection or may even
just be in memory!

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Hierarchy of Streams

• Java provides a hierarchy of streams
– Think of this as different “filters” you can add on to

your water pipe
• Some may compress/decompress data
• Some may provide buffers

• Common Use Scenario
– Streams are used by layering them together to form

the type of “pipe” we eventually want

file in
filesystem

FileInputStreamBufferedReader

client code read() requests

data

GZIPInputStream

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Types of Streams

• InputStream / OutputStream
– Base class streams with few features
– read() and write()

• FileInputStream / FileOutputStream
– Specifically for connecting to files

• ByteArrayInputStream / ByteArrayOutputStream
– Use an in-memory array of bytes for storage!

• BufferedInputStream / BufferedOutputStream
– Improve performance by adding buffers
– Should almost always use buffers

• BufferedReader / BufferedWriter
– Convert bytes to unicode Char and String data
– Probably most useful for what we need

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Streams and Threads

• When a thread sends a read() to a stream,
if the data is not ready, the thread blocks
in the call to read(). When the data is
there, the thread unblocks and the call to
read() returns

• The reading/writing code does not need to
do anything special

• Read 10 things at once – create 10
threads!

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Reading Example

public void readLines(String fname) {
try {

// Build a reader on the fname, (also works with File object)
BufferedReader in = new BufferedReader(new

FileReader(fname));
String line;
while ((line = in.readLine()) != null) {

// do something with 'line'
System.out.println(line);

}

in.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Writing Example

public void writeLines(String fname) {
try {

// Build a writer on the fname (also works on File objects)
BufferedWriter out = new BufferedWriter(new FileWriter(fname));

// Send out.print(), out.println() to write chars
for (int i=0; i<data.size(); i++) {

out.println(... ith data string ...);
}

out.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

HTTP

• Java has build-in and very elegant support
for HTTP

• Code on the handout is what you will need
for HW #3 Part b!

• URL
– Uniform Resource Location

• http://cs193j.stanford.edu

• URLConnection
– To open a network connection to a URL and

be able to get a stream from it to read data!

http://cs193j.stanford.edu/

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

HTTP Example
• public static void dumpURL(String urlString) {
• try {
• URL url = new URL(urlString);
• URLConnection conn = url.openConnection();
• InputStream stream = conn.getInputStream();
• BufferedReader in = new BufferedReader(new

InputStreamReader(stream));
•
• String line;
• while ((line = in.readLine()) != null) {
• System.out.println(line);
• }
• in.close();
• }
• catch (MalformedURLException e) {
• e.printStackTrace();
• }
• catch (IOException e) {
• e.printStackTrace();
• }
• }

February 20, 2003 Copyright © 2003, Manu Kumar & Nick Parlante

Summary!

• Today
– Tips and Tricks
– MVC / Tables
– Exceptions
– Files and Streams

• Homework #3 Part b handed out!

	CS193J: Programming in JavaWinter Quarter 2003MVC/JTable, Exceptions and Files
	Agenda
	Handouts
	While we’re talking about tips…
	Homework #3 Part b intuition
	MVC
	Rudimentary MVC diagram
	Sun’s MVC Pattern Diagram
	Tables in Swing
	Tables in Swing
	AbstractTableModel
	BasicTableModel
	Live Example!
	Table Tips!
	Exceptions
	Error-Handling
	Traditional Approach to Error Handling
	The Java Way: Exceptions
	Exception Classes
	Exception Subclasses
	Methods with Exceptions
	“Handling” Exceptions
	try / catch
	try / catch example
	printStackTrace() is your friend!
	Files and Streams
	Streams!??
	Hierarchy of Streams
	Types of Streams
	Streams and Threads
	Reading Example
	Writing Example
	HTTP
	HTTP Example
	Summary!

