C5193j, Stanford Handout #24
Winter, 2002-03 Nick Parlantel

MVC / Tables

Model / View / Controller

Design
A decomposition strategy where "presentation" is separated from data
maintenance
Smalltalk idea
Controller is often combined with View, so have Model and View /Controller
Web Version
Shopping cart model is on the server
The view is the HTML in front of you
Form submit = send transaction to the model, it computes the new state,
sends you back a new view

Modularity

Writing larger programs in teams, we're always on the lookup for a natural
dividing line to help use separate our 1000 into two 500 line parts that are as
independent as possible.

Separating the "Data Model" and "View" ideas is works well and is a common
modularity strategy.

Model -- aka Data Model

"data model"
Storage, not presentation
Knows data, not pixels
Support data model operations
cut/copy/paste, File Saving, undo, networked data -- these can be expressed
just on the model which simplifies things
e.g. can get the logic for file save or undo working, without worrying about
pixels.

View
Presentation
Gets all data from model and draws or otherwise renders it for the user

1 Minor edits by Manu Kumar

Controller

The logic that glues things together.

Manage the relationship between the model and view

1. Most data changes are initiated by user events (keyboard, mouse gestures) that
tend to happen on the view side. These are translated to messages to the model
which does the actual data maintenance

2. Going the other direction, the view needs to hear about changes in the model.
In Java, this is done with a Listener paradigm in Swing.

Usually, the controller is implemented in the view.

Model Role

Respond to getters methods to provide data
Respond to setters to change data
Manage a list of listeners
Java uses the Model/ Listener structure, and it's a good design, although there
are other ways to do it. Alternately, the model could not know anything
about the views (dumb), and instead there is some Controller that is smart
about keeping the view and model in synch both ways.
When receiving a setData() to change the data, notify the listeners of the change
(fireXXXChanged)
Change notifications express the different changes possible on the model. (cell
edited, row deleted, ...)
Iterate through the listeners and notify each about the change.

View Role

Have pointer to model

Don't store any data

Send getData() to model to get data as needed

User edit operations (clicking, typing) in the UI map to setData() messages sent
to model

Register as a listener to the model and respond to change notifications

On change notification, consider doing a getData() to get the new values to make
the pixels up-to-date with the real data.

Swing Table Classes

JTable -- view

Uses a TableModel for storage
Has all sorts of built-in features to display tabular data.

TableModel -- Interface

The messages that define a table model -- the abstraction is a rectangular area of
cells.

getValueAt(), setValueAt(), getRowCount(), getColumnCounty), ...

The table model establishes a co-ordinate system: 0..getRowCount()-1,
0..getColumnCount()-1. The model and the view(s) all use the model
coordinate system to identify rows and columns.

TableModellListener -- Interface

Defines the one method tableChanged()
If you want to listen to a TableModel to hear about its changes, implement this

interface.
public interface Tabl eModel Li stener extends java.util.EventListener

{

/**

* This fine grain notification tells listeners the exact range
* of cells, rows, or colums that changed.

*/

public void tabl eChanged(Tabl eModel Event e);

AbstractTableModel

Implements some TableModel utility behavior.
Provides helper utilities for things not directly related to storage
addTableModelListener(), removeTableModelListener(), ...
tireXXXChanged() convenience methods
These iterate over the listeners and send the appropriate notification
fireTableCellUpdated(row, col)
fireTableRowDeleted(row)
etc.
getRowCount(), getColumnCount(), and getValueAt() are abstract -- they must
be provided by a subclass model that actually stores data.

DefaultTableModel

extends AbstractTableModel
Complete implementation with Vector

BasicTableModel Code Points

A complete implementation of TableModel using ArrayList
getValueAt()
Pulls data out of the ArrayList of ArrayList implementation
setValueAt()
Changes the data model and uses fireTableXXX (below) to notify the listeners

AbstractTableModel
Has routine code in it to manage listeners -- add and remove.
Has fireTableXXX() methods that notify the listeners -- BasicTableModel uses
these to tell the listeners about changes.

1. Passive Example

1. Table View points to model
2. View does model.getXXX to get data to display

2. Row Add Example

1. Add row button wired to the model

2. Model changes its state

3. Model does fireRowAdded() which sends notification to each listener
4. Listeners get the notification, call getData() as needed

3. Edit Example

1. Table View1 points to model for its data and listens for changes

2. Table View?2 also points to the model and listens for changes

3. User clicks/edits data in View1

4. View1 does a model.setXXX to make the change

5. Model does a fireDataChanged() -- notifies both listeners

6. Both views get the notification of change, update their display (getXXX) if
necessary

View?2 can be smart if View1 changes a row that View? is not currently
scrolled to see.

D ————— [ableframe ==s—sa——0aee0a0Q8F0————s E
Marme [Faworite Thing Add Row

Barney Sawing please and thank wou

Tinky Winky Playing with my purse #Add Column |
[Dr. Ross Mot Being on TV Delete Row

i i) te.
Elvis DRTE,EE] Load File
Marme [Favarite Thing

Barney Saving please and thank wou

Tinky Winky Playing with my purse

Dr. Ross Mot Being on TY

Elvis

In this case, "Elvis" has been entered, but the return key has not yet been hit for
the "Sex, drugs, etc." entry

BasicTableModel.java

Demonstrates a complete implementation of TableModel -- stores the data
and generates fireXXXChanged() notifications where necessary.

/1 Basi cTabl eMbdel . j ava

/*
Denonstrate a basic table nodel inplenentation
using Arraylist.

A row may be shorter than the nunmber of col ums
whi ch conplicates the data handling a bit.

*/

i mport java.awt.*;

i mport javax.sw ng.*;

i mport javax.sw ng.table.*;

i mport java.util.?*;
i mport java.io.*;

cl ass Basi cTabl eMbdel extends Abstract Tabl eMbdel {
private ArraylLi st nanes; /1 the | abel strings
private ArraylList data; /1 arraylist of arraylists

publ i ¢ Basi cTabl eMbdel () {
super () ;

nanes = new Arraylist();
data = new ArraylList()

}

/1 Basic Model overrides
public String get Col umNanme(int col) {
return (String) nanes.get(col);

public int getColumCount() { return(nanmes.size()); }
public int get RowCount() { return(data.size()); }
public Object getValueAt(int row, int col)
ArraylList rowLi st = (ArraylList) data.get(row);
String result = null;
if (col<rowlist.size(
r

result = (String) 2)\)M_i{st.get(col);

/1 _apparently it's ok to return null for a "blank" cell
return(result);

/1 Support writing
public boolean isCell Editable(int row, int col) { return true; }
public void setVal ueAt (Object value, int row, int col) {

ArrayList rowList = (ArraylList) data.get(row;

/1 make this row | ong enough
if (col>=rowList.size()) {
whil e (col >=rowLi st.size()) rowList.add(null);

rowLi st.set(col, value);

/1 notify nodel listeners of cell change
fireTabl eCel | Updat ed(row, col);

}

/1 Adds the given colum to the right hand side of the nodel
public void addCol um(String nane) {
nanes. add(nane) ;
fireTabl eStruct ureChanged();
/*
At present, Tabl eModel Li stener does not have a nore specific
notification for changing the nunber of col umms.
*/
}

/1 Adds an enpty row, returns the new row i ndex
public int addRow() {
/] Create a newrow with nothing in it
ArrayList row = new ArraylList();
return(addRow(row));

/1 Adds the given row, returns the new row i ndex
public int addRow ArrayList row) {
dat a. add(row) ;
fireTabl eRowsl nserted(data.size()-1, data.size()-1);
return(data.size() -1);

}

/1 Deletes the given row
public void deleteRow(int row {
if (row==-1) return;

dat a. renove(row) ;
fireTabl eRowsDel et ed(row, row);

}

/*
Uility.
Gven a text line of tab-delimted strings, build
an Arraylist of the strings.
*/
private static ArrayList stringToList(String string) {
/1l Create a tokenize that uses \t as the delim and reports
/1 both the words and the delineters.
StringTokeni zer tokenizer = new StringTokenizer(string, "\t",
ArrayList row = new ArraylList();
String elem= null;
String last = null;
whi | e(t okeni zer. hasMor eTokens()) {
last = elem
el em = t okeni zer. next Token() ;
if ('elemequals("\t")) row add(el em;
else if (last.equals("\t")) row add("");
/1 W need to track the 'last' state so we can treat

true);

/1 two tabs in a row as an enpty string colum.
}
if (elemequals("\t")) row add(""); // tricky: notice final elenent

return(row;

/*
Uility
G ven a collection of strings, wites themout as a line of text, separated by
t abs.
Nul | strings are interpreted as a zero-length strings.
*/
private static void witeStrings(BufferedWiter out, Collection strings
t hrows | OException {
Iterator it = strings.iterator();

while (it.hasNext()) {
String string = (String)it.next();
i f (str|ng' =null) out.wite(string);
if (it.hasNext()) out.wite('\t");

out . newLi ne();

}
/*
Loads the whole nodel froma file.
*/
public void loadFile(File file) {
try {
Fi | eReader fil eReader = new Fil eReader(file);
Buf f er edReader bufferedReader = new Buff eredReader (fil eReader);
/1 read the colum nanes
ArraylList first = stringToLi st (bufferedReader.readLine());
nanes = first;
/1 each line nakes a row in the data nodel
String |ine;
data = new Arraylist();
while ((line = bufferedReader.readLine()) !'= null) {
dat a. add(stringToList(line));
}
/1 Send notifications that the whole table is now different
fireTabl eStruct ureChanged();
}
catch (1 CException e) {
e.printStackTrace();
}
/*
Saves the nodel to the given file as tab-delimted text.
*/
public void saveToFile(File file) {

try {
Buf feredWiter out = new BufferedWiter(new FileWiter(file));

// wite the colum nanes

witeStrings(out, names);

/!l wite all the data

for (int i=0; i<data.size(); i++) {
witeStrings(out, (ArrayList) data.get(i));

out. cl ose();

}
catch (1 OException e) {
e.printStackTrace();

TableFrame.java

/1 Tabl eFrane. java
/*

Denonstrate a couple tabl es using one table nodel.
*/

i mport java.awt.*;
i mport javax.sw ng.*;
i mport java.util.*;

i mport java.awt.event.*;
i mport javax.sw ng.event.*;
i mport javax.sw ng.fil echooser. *;

cl ass Tabl eFranme extends JFrane {
privat e Basi cTabl eMbdel nodel ;

private JTabl e table;
private JTabl e tabl e2;

JButt on col umButt on;
JButton rowButton,;
JButton del et eButton;
JButton | oadButton;
JButton saveButton;
JConponent content;

public Tabl eFrane(String title) {
super (title);
content = (JConponent) get Cont ent Pane();
content . set Layout (new Bor der Layout (6, 6));

/1l Create a table nodel
nodel = new Basi cTabl eModel () ;

/!l Create a table using that nodel
tabl e = new JTabl e(nodel) ;

here are many options for col resize strategy

/1t
//tabl e. set Aut oResi zeMbde(JTabl e. AUTO RESI ZE ALL COLUWNS) ;
I

Tabl e. AUTO_RESI ZE_OFF

/!l Create a scroll pane in the center, and put

/1 the table in it

JScrol | Pane scrol | pane = new JScrol | Pane(t abl e);
scrol | pane. set PreferredSi ze(new Di nmensi on(300, 200));

content . add(scrol | pane, BorderLayout.CENTER);

/1 Create a second table using the sane nodel, and put in the south
JTabl e tabl e2 = new JTabl e(nodel) ;

scrol | pane = new JScrol | Pane(tabl e2);

scrol | pane. set PreferredSi ze(new Di mensi on(300, 200));

cont ent . add(scrol | pane, BorderLayout.SOUTH);

/] Create a bunch of controls in a box

JPanel panel = new JPanel ();

panel . set Layout (new BoxLayout (panel, BoxLayout.Y AXIS));
cont ent. add(panel, BorderLayout. EAST);

rowButton = new JButton("Add Row');
panel . add(rowButton);
rowBut t on. addAct i onLi st ener (
new ActionLi stener() {
public void actionPerformed(ActionEvent e) {
int i = nodel.addRow();
tabl e. cl ear Sel ection();
t abl e. addRowSel ectionlnterval (i, i);
}
}
)

col umButton = new JButton("Add Col um");
panel . add(col utmButt on) ;
col umBut t on. addAct i onLi st ener (
new ActionLi stener() {
public void actionPerformnmed(ActionEvent e) {
String result = JOptionPane. show nput Di al og("What name for the new
col um?");
if (result !'= null)
nodel . addCol um(result);
}

}
}
)

del et eButton = new JButton("Del ete Row');
panel . add(del et eButton);
del et eBut t on. addAct i onLi st ener (
new Acti onLi stener() {
public void actionPerfornmed(ActionEvent e) {
int row = tabl e. get Sel ect edRow) ;
if (row =-1) nodel.del et eRow(row);
}
}
)

| oadButton = new JButton("Load File");
panel . add(| oadButton);
| oadBut t on. addAct i onLi st ener (
new Acti onLi stener () {
public void actionPerformed(ActionEvent e) {
/1 FileSystenView fsv = Fil eSystenVi ew. get Fi | eSyst enVi ew() ;

JFi | eChooser chooser = new JFil eChooser(".");

int status = chooser.showOQpenDi al og(Tabl eFrane. t his);

if (status == JFil eChooser. APPROVE_OPTI ON)

nodel . | oadFi | e(chooser. get Sel ectedFile());

}

saveButton = new JButton("Save File");
panel . add(saveButton);
saveButt on. addAct i onLi st ener (
new ActionLi stener() {
public void actionPerformed(ActionEvent e) {
JFi | eChooser chooser = new JFil eChooser(".");
int status = chooser. shoWSaveD al og(Tabl eFrane. t hi s);
if (status == JFil eChooser. APPROVE_OPTI ON)
nodel . saveToFi | e(chooser. get Sel ectedFile());
}

}
}
);
set Def aul t O oseQperati on(JFranme. EXI T_ON _CLOSE) ;

pack();
set Vi si bl e(true);

static public void main(String[] args)

new Tabl eFr ame(" Tabl eFrane");

}

10

11

MVC Summary

MVC is used in Swing in many places, and it is also a pattern you will see in
other systems.
1. Data model -- storage
Deals with storage. Algorithmic code can send messages to the model to get,
modify, and write back the data
2. View -- presentation
Gets data from the model and presents it. Translates user actions in the view
into getters/setters sent to model. Presentation could be pixels, HTML,
PDF, ...
3. Listener logic
A design used in Swing: Model/view use a listener system to update the
view(s) about changes in the model.

Advantage: Modularity

2 small problems vs. 1 big problem
Provides a natural decomposition "pattern"
You will get used to the MVC decomposition. Other Java programmers will
also. It ends up providing a common, understood language.
Isolate coding problems in a smaller domain
Can solve GUI problems just in the GUI domain, the storage etc. is all quite
separate. e.g. don't worry about file saving when implementing scrolling
and visa-versa.

Networking / Mult Views

The abstraction between the model and view works well for a networked
version: the model is on the central machine, the view is on the client machine.

The abstraction between the model and view can support multiple views all
looking at one model (on one machine, or with some views over the network).

Use 50% Off The Shelf

The Model and View are both already written -- can customize one or the other
e.g. Substitute, say, your own Model, but use the off the shelf View.

e.g. File Save, or Undo

File save can be implemented /debugged just against the model. If the view
worked before, it should still work.

undo() can just be implemented on the model -- it has to interact with far fewer
lines of code than if it were implemented on top of some sort of combined
model+view system

e.g. Web Site

Suppose you are implementing a calendaring web site.

model -- complex data relationships of people, times, events

view -- web pages, javascript, etc. that present parts of the model

Need to support multiple views simultaneously, and perhaps different types of
view -- web page, PDF, IM message, ...

MVC: the data model team and the view team should be separate as much as
possible -- don't want choices about pixels to interfere which choices of
whether to store events in a hash map vs. a binary tree.

This is what the modern Servlet/]JSP style does. The servlet does the data model
"business logic", and the JSP just sends getter messages and formulates the
results in to HTML or whatever (take CS193i).

e.g. Model Substitution

Have some 2-d data. Want to present it in a 2-d GUIL Wrap your data up so that
it responds to getColumnCount(), getDataAt(), etc....

Build a JTable, passing it pointer to your object as the data model and voila. The
scrolling, the GUI, etc. etc. is all done by JTable.

e.g. Wrap Database

Similar example -- suppose you have a table in an SQL database. Wrap it in
TableModel class that makes the data appear to be in row/col format.
getValueAt() requests are translated into queries on the database. Note that the
JTable is insulated from knowing how you get the data, so long as you respond
to the TableModel messages -- that's a nice use of OOP modularity.

Danger: Listener Storm

Suppose you have objects A, B, and C

Suppose they are listening to each other

Can get a sort of infinite loop where A changes and notifies B, which changes as
a result and notifies C, which changes as a result, and notifies A, which ...

Solution #1: on change notification, do the data = model.getData(), but then
check if the data value is actually different from the old value. Only notify if
the value is actually different. This solves some cases.

Solution #2: have a "isupdating" boolean. Set it to true while making a change
and doing notifications. Ignore notifications that come in while
isupdating==true.

12

13

	Design
	A decomposition strategy where "presentation" is separated from data maintenance
	Smalltalk idea
	Controller is often combined with View, so have Model and View/Controller

	Web Version
	Shopping cart model is on the server
	The view is the HTML in front of you
	Form submit = send transaction to the model, it computes the new state, sends you back a new view

	Modularity
	Writing larger programs in teams, we're always on the lookup for a natural dividing line to help use separate our 1000 into two 500 line parts that are as independent as possible.
	Separating the "Data Model" and "View" ideas is works well and is a common modularity strategy.

	Model -- aka Data Model
	"data model"
	Storage, not presentation
	Knows data, not pixels
	Support data model operations
	cut/copy/paste, File Saving, undo, networked data -- these can be expressed just on the model which simplifies things
	e.g. can get the logic for file save or undo working, without worrying about pixels.

	View
	Presentation
	Gets all data from model and draws or otherwise renders it for the user

	Controller
	The logic that glues things together.
	Manage the relationship between the model and view
	1. Most data changes are initiated by user events (keyboard, mouse gestures) that tend to happen on the view side. These are translated to messages to the model which does the actual data maintenance
	2. Going the other direction, the view needs to hear about changes in the model. In Java, this is done with a Listener paradigm in Swing.
	Usually, the controller is implemented in the view.

	Model Role
	Respond to getters methods to provide data
	Respond to setters to change data
	Manage a list of listeners
	Java uses the Model/Listener structure, and it's a good design, although there are other ways to do it. Alternately, the model could not know anything about the views (dumb), and instead there is some Controller that is smart about keeping the view and

	When receiving a setData() to change the data, notify the listeners of the change (fireXXXChanged)
	Change notifications express the different changes possible on the model. (cell edited, row deleted, ...)
	Iterate through the listeners and notify each about the change.

	View Role
	Have pointer to model
	Don't store any data
	Send getData() to model to get data as needed
	User edit operations (clicking, typing) in the UI map to setData() messages sent to model
	Register as a listener to the model and respond to change notifications
	On change notification, consider doing a getData() to get the new values to make the pixels up-to-date with the real data.

	JTable -- view
	Uses a TableModel for storage
	Has all sorts of built-in features to display tabular data.

	TableModel -- Interface
	The messages that define a table model -- the abstraction is a rectangular area of cells.
	getValueAt(), setValueAt(), getRowCount(), getColumnCount(), ...
	The table model establishes a co-ordinate system: 0..getRowCount()-1, 0..getColumnCount()-1. The model and the view(s) all use the model coordinate system to identify rows and columns.

	TableModelListener -- Interface
	Defines the one method tableChanged()
	If you want to listen to a TableModel to hear about its changes, implement this interface.

	AbstractTableModel
	Implements some TableModel utility behavior.
	Provides helper utilities for things not directly related to storage
	addTableModelListener(), removeTableModelListener(), ...

	fireXXXChanged() convenience methods
	These iterate over the listeners and send the appropriate notification
	fireTableCellUpdated(row, col)
	fireTableRowDeleted(row)
	etc.

	getRowCount(), getColumnCount(), and getValueAt() are abstract -- they must be provided by a subclass model that actually stores data.

	DefaultTableModel
	extends AbstractTableModel
	Complete implementation with Vector

	BasicTableModel Code Points
	A complete implementation of TableModel using ArrayList
	getValueAt()
	Pulls data out of the ArrayList of ArrayList implementation

	setValueAt()
	Changes the data model and uses fireTableXXX (below) to notify the listeners

	AbstractTableModel
	Has routine code in it to manage listeners -- add and remove.
	Has fireTableXXX() methods that notify the listeners -- BasicTableModel uses these to tell the listeners about changes.

	1. Passive Example
	
	1. Table View points to model
	2. View does model.getXXX to get data to display

	2. Row Add Example
	
	1. Add row button wired to the model
	2. Model changes its state
	3. Model does fireRowAdded() which sends notification to each listener
	4. Listeners get the notification, call getData() as needed

	3. Edit Example
	
	1. Table View1 points to model for its data and listens for changes
	2. Table View2 also points to the model and listens for changes
	3. User clicks/edits data in View1
	4. View1 does a model.setXXX to make the change
	5. Model does a fireDataChanged() -- notifies both listeners
	6. Both views get the notification of change, update their display (getXXX) if necessary
	View2 can be smart if View1 changes a row that View2 is not currently scrolled to see.

	�
	In this case, "Elvis" has been entered, but the return key has not yet been hit for the "Sex, drugs, etc." entry

	BasicTableModel.java
	
	Demonstrates a complete implementation of TableModel -- stores the data and generates fireXXXChanged() notifications where necessary.

	TableFrame.java
	MVC is used in Swing in many places, and it is also a pattern you will see in other systems.
	1. Data model -- storage
	Deals with storage. Algorithmic code can send messages to the model to get, modify, and write back the data

	2. View -- presentation
	Gets data from the model and presents it. Translates user actions in the view into getters/setters sent to model. Presentation could be pixels, HTML, PDF, ...

	3. Listener logic
	A design used in Swing: Model/view use a listener system to update the view(s) about changes in the model.

	Advantage: Modularity
	2 small problems vs. 1 big problem
	Provides a natural decomposition "pattern"
	You will get used to the MVC decomposition. Other Java programmers will also. It ends up providing a common, understood language.

	Isolate coding problems in a smaller domain
	Can solve GUI problems just in the GUI domain, the storage etc. is all quite separate. e.g. don't worry about file saving when implementing scrolling and visa-versa.

	Networking / Mult Views
	The abstraction between the model and view works well for a networked version: the model is on the central machine, the view is on the client machine.
	The abstraction between the model and view can support multiple views all looking at one model (on one machine, or with some views over the network).

	Use 50% Off The Shelf
	The Model and View are both already written -- can customize one or the other
	e.g. Substitute, say, your own Model, but use the off the shelf View.

	e.g. File Save, or Undo
	File save can be implemented/debugged just against the model. If the view worked before, it should still work.
	undo() can just be implemented on the model -- it has to interact with far fewer lines of code than if it were implemented on top of some sort of combined model+view system

	e.g. Web Site
	Suppose you are implementing a calendaring web site.
	model -- complex data relationships of people, times, events
	view -- web pages, javascript, etc. that present parts of the model
	Need to support multiple views simultaneously, and perhaps different types of view -- web page, PDF, IM message, ...
	MVC: the data model team and the view team should be separate as much as possible -- don't want choices about pixels to interfere which choices of whether to store events in a hash map vs. a binary tree.
	This is what the modern Servlet/JSP style does. The servlet does the data model "business logic", and the JSP just sends getter messages and formulates the results in to HTML or whatever (take CS193i).

	e.g. Model Substitution
	Have some 2-d data. Want to present it in a 2-d GUI. Wrap your data up so that it responds to getColumnCount(), getDataAt(), etc....
	Build a JTable, passing it pointer to your object as the data model and voila. The scrolling, the GUI, etc. etc. is all done by JTable.

	e.g. Wrap Database
	Similar example -- suppose you have a table in an SQL database. Wrap it in TableModel class that makes the data appear to be in row/col format. getValueAt() requests are translated into queries on the database. Note that the JTable is insulated from kn

	Danger: Listener Storm
	Suppose you have objects A, B, and C
	Suppose they are listening to each other
	Can get a sort of infinite loop where A changes and notifies B, which changes as a result and notifies C, which changes as a result, and notifies A, which ...
	Solution #1: on change notification, do the data = model.getData(), but then check if the data value is actually different from the old value. Only notify if the value is actually different. This solves some cases.
	Solution #2: have a "isupdating" boolean. Set it to true while making a change and doing notifications. Ignore notifications that come in while isupdating==true.

