
CS193j, Stanford Handout #24
Winter, 2002-03 Nick Parlante1

MVC / Tables
Model / View / Controller
Design

A decomposition strategy where "presentation" is separated from data
maintenance

Smalltalk idea
Controller is often combined with View, so have Model and View/Controller

Web Version
Shopping cart model is on the server
The view is the HTML in front of you
Form submit = send transaction to the model, it computes the new state,

sends you back a new view

Modularity
 Writing larger programs in teams, we're always on the lookup for a natural

dividing line to help use separate our 1000 into two 500 line parts that are as
independent as possible.

Separating the "Data Model" and "View" ideas is works well and is a common
modularity strategy.

Model -- aka Data Model
"data model"
Storage, not presentation
Knows data, not pixels
Support data model operations

cut/copy/paste, File Saving, undo, networked data -- these can be expressed
just on the model which simplifies things

e.g. can get the logic for file save or undo working, without worrying about
pixels.

View
Presentation
Gets all data from model and draws or otherwise renders it for the user

1 Minor edits by Manu Kumar

 2

Controller
The logic that glues things together.
Manage the relationship between the model and view
1. Most data changes are initiated by user events (keyboard, mouse gestures) that

tend to happen on the view side. These are translated to messages to the model
which does the actual data maintenance

2. Going the other direction, the view needs to hear about changes in the model.
In Java, this is done with a Listener paradigm in Swing.

Usually, the controller is implemented in the view.

Model Role
Respond to getters methods to provide data
Respond to setters to change data
Manage a list of listeners

Java uses the Model/Listener structure, and it's a good design, although there
are other ways to do it. Alternately, the model could not know anything
about the views (dumb), and instead there is some Controller that is smart
about keeping the view and model in synch both ways.

When receiving a setData() to change the data, notify the listeners of the change
(fireXXXChanged)

Change notifications express the different changes possible on the model. (cell
edited, row deleted, ...)

Iterate through the listeners and notify each about the change.

View Role
Have pointer to model
Don't store any data
Send getData() to model to get data as needed
User edit operations (clicking, typing) in the UI map to setData() messages sent

to model
Register as a listener to the model and respond to change notifications
On change notification, consider doing a getData() to get the new values to make

the pixels up-to-date with the real data.

Swing Table Classes
JTable -- view
Uses a TableModel for storage
Has all sorts of built-in features to display tabular data.

 3

TableModel -- Interface
The messages that define a table model -- the abstraction is a rectangular area of

cells.
getValueAt(), setValueAt(), getRowCount(), getColumnCount(), ...
The table model establishes a co-ordinate system: 0..getRowCount()-1,

0..getColumnCount()-1. The model and the view(s) all use the model
coordinate system to identify rows and columns.

TableModelListener -- Interface
Defines the one method tableChanged()
If you want to listen to a TableModel to hear about its changes, implement this

interface.
public interface TableModelListener extends java.util.EventListener
{
 /**
 * This fine grain notification tells listeners the exact range
 * of cells, rows, or columns that changed.
 */
 public void tableChanged(TableModelEvent e);
}

AbstractTableModel
Implements some TableModel utility behavior.
Provides helper utilities for things not directly related to storage

addTableModelListener(), removeTableModelListener(), ...
fireXXXChanged() convenience methods

These iterate over the listeners and send the appropriate notification
fireTableCellUpdated(row, col)
fireTableRowDeleted(row)
etc.

getRowCount(), getColumnCount(), and getValueAt() are abstract -- they must
be provided by a subclass model that actually stores data.

DefaultTableModel
extends AbstractTableModel
Complete implementation with Vector

BasicTableModel Code Points
A complete implementation of TableModel using ArrayList
getValueAt()

Pulls data out of the ArrayList of ArrayList implementation
setValueAt()

Changes the data model and uses fireTableXXX (below) to notify the listeners

 4

AbstractTableModel
Has routine code in it to manage listeners -- add and remove.
Has fireTableXXX() methods that notify the listeners -- BasicTableModel uses

these to tell the listeners about changes.

1. Passive Example
1. Table View points to model
2. View does model.getXXX to get data to display

2. Row Add Example
1. Add row button wired to the model
2. Model changes its state
3. Model does fireRowAdded() which sends notification to each listener
4. Listeners get the notification, call getData() as needed

3. Edit Example
1. Table View1 points to model for its data and listens for changes
2. Table View2 also points to the model and listens for changes
3. User clicks/edits data in View1
4. View1 does a model.setXXX to make the change
5. Model does a fireDataChanged() -- notifies both listeners
6. Both views get the notification of change, update their display (getXXX) if

necessary
View2 can be smart if View1 changes a row that View2 is not currently

scrolled to see.

 5

In this case, "Elvis" has been entered, but the return key has not yet been hit for
the "Sex, drugs, etc." entry

BasicTableModel.java
Demonstrates a complete implementation of TableModel -- stores the data

and generates fireXXXChanged() notifications where necessary.

// BasicTableModel.java

/*
 Demonstrate a basic table model implementation
 using ArrayList.

 A row may be shorter than the number of columns
 which complicates the data handling a bit.
*/
import java.awt.*;
import javax.swing.*;

import javax.swing.table.*;

import java.util.*;
import java.io.*;

class BasicTableModel extends AbstractTableModel {
 private ArrayList names; // the label strings
 private ArrayList data; // arraylist of arraylists

 public BasicTableModel() {
 super();

 names = new ArrayList();
 data = new ArrayList();
 }

 // Basic Model overrides
 public String getColumnName(int col) {
 return (String) names.get(col);
 }
 public int getColumnCount() { return(names.size()); }
 public int getRowCount() { return(data.size()); }
 public Object getValueAt(int row, int col) {
 ArrayList rowList = (ArrayList) data.get(row);
 String result = null;
 if (col<rowList.size()) {
 result = (String)rowList.get(col);
 }

 // _apparently_ it's ok to return null for a "blank" cell
 return(result);
 }

 // Support writing
 public boolean isCellEditable(int row, int col) { return true; }
 public void setValueAt(Object value, int row, int col) {

 6

 ArrayList rowList = (ArrayList) data.get(row);

 // make this row long enough
 if (col>=rowList.size()) {
 while (col>=rowList.size()) rowList.add(null);
 }

 rowList.set(col, value);

 // notify model listeners of cell change
 fireTableCellUpdated(row, col);
 }

 // Adds the given column to the right hand side of the model
 public void addColumn(String name) {
 names.add(name);
 fireTableStructureChanged();
 /*
 At present, TableModelListener does not have a more specific
 notification for changing the number of columns.
 */
 }

 // Adds an empty row, returns the new row index
 public int addRow() {
 // Create a new row with nothing in it
 ArrayList row = new ArrayList();
 return(addRow(row));
 }

 // Adds the given row, returns the new row index
 public int addRow(ArrayList row) {
 data.add(row);
 fireTableRowsInserted(data.size()-1, data.size()-1);
 return(data.size() -1);
 }

 // Deletes the given row
 public void deleteRow(int row) {
 if (row == -1) return;

 data.remove(row);
 fireTableRowsDeleted(row, row);
 }

 /*
 Utility.
 Given a text line of tab-delimited strings, build
 an ArrayList of the strings.
 */
 private static ArrayList stringToList(String string) {
 // Create a tokenize that uses \t as the delim, and reports
 // both the words and the delimeters.
 StringTokenizer tokenizer = new StringTokenizer(string, "\t", true);
 ArrayList row = new ArrayList();
 String elem = null;
 String last = null;
 while(tokenizer.hasMoreTokens()) {
 last = elem;
 elem = tokenizer.nextToken();
 if (!elem.equals("\t")) row.add(elem);
 else if (last.equals("\t")) row.add("");
 // We need to track the 'last' state so we can treat

 7

 // two tabs in a row as an empty string column.
 }
 if (elem.equals("\t")) row.add(""); // tricky: notice final element

 return(row);
 }

 /*
 Utility
 Given a collection of strings, writes them out as a line of text, separated by
tabs.
 Null strings are interpreted as a zero-length strings.
 */
 private static void writeStrings(BufferedWriter out, Collection strings
 throws IOException {
 Iterator it = strings.iterator();

 while (it.hasNext()) {
 String string = (String)it.next();
 if (string!=null) out.write(string);
 if (it.hasNext()) out.write('\t');
 }
 out.newLine();
 }

 /*
 Loads the whole model from a file.
 */
 public void loadFile(File file) {
 try {
 FileReader fileReader = new FileReader(file);
 BufferedReader bufferedReader = new BufferedReader(fileReader);

 // read the column names
 ArrayList first = stringToList(bufferedReader.readLine());
 names = first;

 // each line makes a row in the data model
 String line;
 data = new ArrayList();
 while ((line = bufferedReader.readLine()) != null) {
 data.add(stringToList(line));
 }

 // Send notifications that the whole table is now different
 fireTableStructureChanged();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

 /*
 Saves the model to the given file as tab-delimited text.
 */
 public void saveToFile(File file) {
 try {
 BufferedWriter out = new BufferedWriter(new FileWriter(file));

 // write the column names

 8

 writeStrings(out, names);

 // write all the data
 for (int i=0; i<data.size(); i++) {
 writeStrings(out, (ArrayList) data.get(i));
 }

 out.close();
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }

}

TableFrame.java
// TableFrame.java
/*
 Demonstrate a couple tables using one table model.
*/

import java.awt.*;
import javax.swing.*;
import java.util.*;

import java.awt.event.*;
import javax.swing.event.*;
import javax.swing.filechooser.*;

class TableFrame extends JFrame {
 private BasicTableModel model;

 private JTable table;
 private JTable table2;

 JButton columnButton;
 JButton rowButton;
 JButton deleteButton;
 JButton loadButton;
 JButton saveButton;
 JComponent content;

 public TableFrame(String title) {
 super(title);
 content = (JComponent)getContentPane();
 content.setLayout(new BorderLayout(6,6));

 // Create a table model
 model = new BasicTableModel();

 // Create a table using that model
 table = new JTable(model);

 // there are many options for col resize strategy
 //table.setAutoResizeMode(JTable.AUTO_RESIZE_ALL_COLUMNS);
 // JTable.AUTO_RESIZE_OFF

 // Create a scroll pane in the center, and put
 // the table in it
 JScrollPane scrollpane = new JScrollPane(table);
 scrollpane.setPreferredSize(new Dimension(300,200));

 9

 content.add(scrollpane, BorderLayout.CENTER);

 // Create a second table using the same model, and put in the south
 JTable table2 = new JTable(model);
 scrollpane = new JScrollPane(table2);
 scrollpane.setPreferredSize(new Dimension(300,200));
 content.add(scrollpane, BorderLayout.SOUTH);

 // Create a bunch of controls in a box
 JPanel panel = new JPanel();
 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
 content.add(panel, BorderLayout.EAST);

 rowButton = new JButton("Add Row");
 panel.add(rowButton);
 rowButton.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 int i = model.addRow();
 table.clearSelection();
 table.addRowSelectionInterval(i, i);
 }
 }
);

 columnButton = new JButton("Add Column");
 panel.add(columnButton);
 columnButton.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 String result = JOptionPane.showInputDialog("What name for the new
column?");
 if (result != null) {
 model.addColumn(result);
 }
 }
 }
);

 deleteButton = new JButton("Delete Row");
 panel.add(deleteButton);
 deleteButton.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 int row = table.getSelectedRow();
 if (row!=-1) model.deleteRow(row);
 }
 }
);

 loadButton = new JButton("Load File");
 panel.add(loadButton);
 loadButton.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 //FileSystemView fsv = FileSystemView.getFileSystemView();
 JFileChooser chooser = new JFileChooser(".");
 int status = chooser.showOpenDialog(TableFrame.this);
 if (status == JFileChooser.APPROVE_OPTION) {
 model.loadFile(chooser.getSelectedFile());
 }
 }
 }
);

 10

 saveButton = new JButton("Save File");
 panel.add(saveButton);
 saveButton.addActionListener(
 new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 JFileChooser chooser = new JFileChooser(".");
 int status = chooser.showSaveDialog(TableFrame.this);
 if (status == JFileChooser.APPROVE_OPTION) {
 model.saveToFile(chooser.getSelectedFile());
 }
 }
 }
);

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 pack();
 setVisible(true);
 }

 static public void main(String[] args)
 {
 new TableFrame("TableFrame");
 }
}

 11

MVC Summary
MVC is used in Swing in many places, and it is also a pattern you will see in

other systems.
1. Data model -- storage

Deals with storage. Algorithmic code can send messages to the model to get,
modify, and write back the data

2. View -- presentation
Gets data from the model and presents it. Translates user actions in the view

into getters/setters sent to model. Presentation could be pixels, HTML,
PDF, ...

3. Listener logic
A design used in Swing: Model/view use a listener system to update the

view(s) about changes in the model.

Advantage: Modularity
2 small problems vs. 1 big problem
Provides a natural decomposition "pattern"

You will get used to the MVC decomposition. Other Java programmers will
also. It ends up providing a common, understood language.

Isolate coding problems in a smaller domain
Can solve GUI problems just in the GUI domain, the storage etc. is all quite

separate. e.g. don't worry about file saving when implementing scrolling
and visa-versa.

Networking / Mult Views
The abstraction between the model and view works well for a networked

version: the model is on the central machine, the view is on the client machine.
The abstraction between the model and view can support multiple views all

looking at one model (on one machine, or with some views over the network).

Use 50% Off The Shelf
The Model and View are both already written -- can customize one or the other
e.g. Substitute, say, your own Model, but use the off the shelf View.

e.g. File Save, or Undo
File save can be implemented/debugged just against the model. If the view

worked before, it should still work.

 12

undo() can just be implemented on the model -- it has to interact with far fewer
lines of code than if it were implemented on top of some sort of combined
model+view system

e.g. Web Site
Suppose you are implementing a calendaring web site.
model -- complex data relationships of people, times, events
view -- web pages, javascript, etc. that present parts of the model
Need to support multiple views simultaneously, and perhaps different types of

view -- web page, PDF, IM message, ...
MVC: the data model team and the view team should be separate as much as

possible -- don't want choices about pixels to interfere which choices of
whether to store events in a hash map vs. a binary tree.

This is what the modern Servlet/JSP style does. The servlet does the data model
"business logic", and the JSP just sends getter messages and formulates the
results in to HTML or whatever (take CS193i).

e.g. Model Substitution
Have some 2-d data. Want to present it in a 2-d GUI. Wrap your data up so that

it responds to getColumnCount(), getDataAt(), etc....
Build a JTable, passing it pointer to your object as the data model and voila. The

scrolling, the GUI, etc. etc. is all done by JTable.

e.g. Wrap Database
Similar example -- suppose you have a table in an SQL database. Wrap it in

TableModel class that makes the data appear to be in row/col format.
getValueAt() requests are translated into queries on the database. Note that the
JTable is insulated from knowing how you get the data, so long as you respond
to the TableModel messages -- that's a nice use of OOP modularity.

Danger: Listener Storm
Suppose you have objects A, B, and C
Suppose they are listening to each other
Can get a sort of infinite loop where A changes and notifies B, which changes as

a result and notifies C, which changes as a result, and notifies A, which ...
Solution #1: on change notification, do the data = model.getData(), but then

check if the data value is actually different from the old value. Only notify if
the value is actually different. This solves some cases.

Solution #2: have a "isupdating" boolean. Set it to true while making a change
and doing notifications. Ignore notifications that come in while
isupdating==true.

 13

	Design
	A decomposition strategy where "presentation" is separated from data maintenance
	Smalltalk idea
	Controller is often combined with View, so have Model and View/Controller

	Web Version
	Shopping cart model is on the server
	The view is the HTML in front of you
	Form submit = send transaction to the model, it computes the new state, sends you back a new view

	Modularity
	Writing larger programs in teams, we're always on the lookup for a natural dividing line to help use separate our 1000 into two 500 line parts that are as independent as possible.
	Separating the "Data Model" and "View" ideas is works well and is a common modularity strategy.

	Model -- aka Data Model
	"data model"
	Storage, not presentation
	Knows data, not pixels
	Support data model operations
	cut/copy/paste, File Saving, undo, networked data -- these can be expressed just on the model which simplifies things
	e.g. can get the logic for file save or undo working, without worrying about pixels.

	View
	Presentation
	Gets all data from model and draws or otherwise renders it for the user

	Controller
	The logic that glues things together.
	Manage the relationship between the model and view
	1. Most data changes are initiated by user events (keyboard, mouse gestures) that tend to happen on the view side. These are translated to messages to the model which does the actual data maintenance
	2. Going the other direction, the view needs to hear about changes in the model. In Java, this is done with a Listener paradigm in Swing.
	Usually, the controller is implemented in the view.

	Model Role
	Respond to getters methods to provide data
	Respond to setters to change data
	Manage a list of listeners
	Java uses the Model/Listener structure, and it's a good design, although there are other ways to do it. Alternately, the model could not know anything about the views (dumb), and instead there is some Controller that is smart about keeping the view and

	When receiving a setData() to change the data, notify the listeners of the change (fireXXXChanged)
	Change notifications express the different changes possible on the model. (cell edited, row deleted, ...)
	Iterate through the listeners and notify each about the change.

	View Role
	Have pointer to model
	Don't store any data
	Send getData() to model to get data as needed
	User edit operations (clicking, typing) in the UI map to setData() messages sent to model
	Register as a listener to the model and respond to change notifications
	On change notification, consider doing a getData() to get the new values to make the pixels up-to-date with the real data.

	JTable -- view
	Uses a TableModel for storage
	Has all sorts of built-in features to display tabular data.

	TableModel -- Interface
	The messages that define a table model -- the abstraction is a rectangular area of cells.
	getValueAt(), setValueAt(), getRowCount(), getColumnCount(), ...
	The table model establishes a co-ordinate system: 0..getRowCount()-1, 0..getColumnCount()-1. The model and the view(s) all use the model coordinate system to identify rows and columns.

	TableModelListener -- Interface
	Defines the one method tableChanged()
	If you want to listen to a TableModel to hear about its changes, implement this interface.

	AbstractTableModel
	Implements some TableModel utility behavior.
	Provides helper utilities for things not directly related to storage
	addTableModelListener(), removeTableModelListener(), ...

	fireXXXChanged() convenience methods
	These iterate over the listeners and send the appropriate notification
	fireTableCellUpdated(row, col)
	fireTableRowDeleted(row)
	etc.

	getRowCount(), getColumnCount(), and getValueAt() are abstract -- they must be provided by a subclass model that actually stores data.

	DefaultTableModel
	extends AbstractTableModel
	Complete implementation with Vector

	BasicTableModel Code Points
	A complete implementation of TableModel using ArrayList
	getValueAt()
	Pulls data out of the ArrayList of ArrayList implementation

	setValueAt()
	Changes the data model and uses fireTableXXX (below) to notify the listeners

	AbstractTableModel
	Has routine code in it to manage listeners -- add and remove.
	Has fireTableXXX() methods that notify the listeners -- BasicTableModel uses these to tell the listeners about changes.

	1. Passive Example
	
	1. Table View points to model
	2. View does model.getXXX to get data to display

	2. Row Add Example
	
	1. Add row button wired to the model
	2. Model changes its state
	3. Model does fireRowAdded() which sends notification to each listener
	4. Listeners get the notification, call getData() as needed

	3. Edit Example
	
	1. Table View1 points to model for its data and listens for changes
	2. Table View2 also points to the model and listens for changes
	3. User clicks/edits data in View1
	4. View1 does a model.setXXX to make the change
	5. Model does a fireDataChanged() -- notifies both listeners
	6. Both views get the notification of change, update their display (getXXX) if necessary
	View2 can be smart if View1 changes a row that View2 is not currently scrolled to see.

	�
	In this case, "Elvis" has been entered, but the return key has not yet been hit for the "Sex, drugs, etc." entry

	BasicTableModel.java
	
	Demonstrates a complete implementation of TableModel -- stores the data and generates fireXXXChanged() notifications where necessary.

	TableFrame.java
	MVC is used in Swing in many places, and it is also a pattern you will see in other systems.
	1. Data model -- storage
	Deals with storage. Algorithmic code can send messages to the model to get, modify, and write back the data

	2. View -- presentation
	Gets data from the model and presents it. Translates user actions in the view into getters/setters sent to model. Presentation could be pixels, HTML, PDF, ...

	3. Listener logic
	A design used in Swing: Model/view use a listener system to update the view(s) about changes in the model.

	Advantage: Modularity
	2 small problems vs. 1 big problem
	Provides a natural decomposition "pattern"
	You will get used to the MVC decomposition. Other Java programmers will also. It ends up providing a common, understood language.

	Isolate coding problems in a smaller domain
	Can solve GUI problems just in the GUI domain, the storage etc. is all quite separate. e.g. don't worry about file saving when implementing scrolling and visa-versa.

	Networking / Mult Views
	The abstraction between the model and view works well for a networked version: the model is on the central machine, the view is on the client machine.
	The abstraction between the model and view can support multiple views all looking at one model (on one machine, or with some views over the network).

	Use 50% Off The Shelf
	The Model and View are both already written -- can customize one or the other
	e.g. Substitute, say, your own Model, but use the off the shelf View.

	e.g. File Save, or Undo
	File save can be implemented/debugged just against the model. If the view worked before, it should still work.
	undo() can just be implemented on the model -- it has to interact with far fewer lines of code than if it were implemented on top of some sort of combined model+view system

	e.g. Web Site
	Suppose you are implementing a calendaring web site.
	model -- complex data relationships of people, times, events
	view -- web pages, javascript, etc. that present parts of the model
	Need to support multiple views simultaneously, and perhaps different types of view -- web page, PDF, IM message, ...
	MVC: the data model team and the view team should be separate as much as possible -- don't want choices about pixels to interfere which choices of whether to store events in a hash map vs. a binary tree.
	This is what the modern Servlet/JSP style does. The servlet does the data model "business logic", and the JSP just sends getter messages and formulates the results in to HTML or whatever (take CS193i).

	e.g. Model Substitution
	Have some 2-d data. Want to present it in a 2-d GUI. Wrap your data up so that it responds to getColumnCount(), getDataAt(), etc....
	Build a JTable, passing it pointer to your object as the data model and voila. The scrolling, the GUI, etc. etc. is all done by JTable.

	e.g. Wrap Database
	Similar example -- suppose you have a table in an SQL database. Wrap it in TableModel class that makes the data appear to be in row/col format. getValueAt() requests are translated into queries on the database. Note that the JTable is insulated from kn

	Danger: Listener Storm
	Suppose you have objects A, B, and C
	Suppose they are listening to each other
	Can get a sort of infinite loop where A changes and notifies B, which changes as a result and notifies C, which changes as a result, and notifies A, which ...
	Solution #1: on change notification, do the data = model.getData(), but then check if the data value is actually different from the old value. Only notify if the value is actually different. This solves some cases.
	Solution #2: have a "isupdating" boolean. Set it to true while making a change and doing notifications. Ignore notifications that come in while isupdating==true.

