CS193j, Stanford Handout #30
Winter, 2002-03 Nick Parlante

HW4 - XEdit

This is a relatively small homework to give you a little practice with Java's XML
parsing features. HW4 is due midnight ending Thu Mar 13th. For this
assignment, you will build a tool that does search/replace edits on XML files.
Programs like perl, awk are very popular for this sort of thing with straight text
files, and we will extend the idea to a program which understands the structure
of XML. Of course, we will rely on Java's XML libraries to do the work of parsing
and writing the XML itself.

Suppose we have the following XML file...

<?xm version="1.0" encodi ng="UTF-8""?>
<pr oduct s>
<pr oduct >
<title>Wdget</title>
<i d>10</i d>
<col or >red</ col or >
<description>This finely crafted red widget, with over 10 jewels,
will be a welconme addition to any wi dget collection.</description>
</ pr oduct >
<pr oduct >
<title>Box O Peeps</title>
<id>11</id>
<col or >yel | ow/ col or >
</ pr oduct >
<pr oduct >
<title>USB Cabl e</title>
<id>12</id>
<col or >gr een</ col or >

<description>A |l ovely USB cable (includes a free Wdget)</description>

<bundl e><i d>10</i d></ bundl| e>
</ pr oduct >
</ pr oduct s>

XEdit uses command line arguments to specify search/replace operations on an
XML file. The program reads the XML file specified in the last argument,
processes it, and writes the new form of the XML to standard output. It's ok if the
output does not have the tidy indenting of the input.

Usage: java XEdit -s search -r replace -t tag file.xml

-s search = the string to search for in text between tags (these are of
type TEXT_NODE in the DOM tree). The search is case-sensitive.
For simplicity, the search applies to raw text between tags, not
attributes.



-r replace = the replacement text for the search string. Defaults to the
empty string " if not specified, in which case the search text is
effectively deleted.

-t tag = a constraint to only do the search/replace on dat that is
nested, at some depth, inside the given tag. If not specified, the
search/replace happens in all the text nodes in the document.

So for example "-s 10 -r 11 -t id products.xml" changes the two occurrences of
"<id>10</id>" to "<id>11</id>" -- one in Widget and one in the USB Cable
<bundle> section. Note that the 10 in the description is not changed. This is the
advantage of XML -- the data is structured, so we can change the id 10's without
disturbing the other 10's.

The search/replace may be nested a few levels below the tag, so "-s red -r rouge
-t product products.xml” changes the two occurrences of "red" to "rouge" in the
Widget. The commands "-s finely -t description products.xml" or "-s finely
products.xml" will delete the one occurrence of the word "finely".

The starter file contains the routine code to do the 1/0, read and write the XML
and parse the command line arguments, so you can concentrate on traversing the
DOM to perform the search/replace.

= See the JAXP docs (linked off the course page). In particular, most of
our operations can be done off the Node class: getNodeType(),
getNodeName(), getChildNodes(), getNodeValue(),
setNodeValue().

= For nodes of type TEXT_NODE, the program should use
getNodeValue()/setNodeValue() to get and set the text. Use the
String class for the search/replace itself. Rather than change the
text, you construct a new string with the replacement text spliced
in.

= Otherwise, for nodes of type ELEMENT_NODE, the algorithm
should recur over the child nodes. The algorithm will need to check
if the getNodeName() of the node is equal to the -t tag to control if
search/replace is active or not. We recommend using a boolean
replaceActive parameter to communicate if search/replace is active
from one call to the next.

= The starter code reads the command line arguments and sets up
ivars "search” "replace" and "tag" for you -- the recursion can just
look at these ivars.

Logistics

In Java version 1.4, the XML libraries are a standard part of the Java installation.
Using java 1.4, the XML stuff should just work. To use the XML libraries on Java
1.3 and earlier, the files jaxp.jar and crimson.jar are needed -- these are available
in the Zusr/class/cs108/jar directory. Copy the two jar files to your directory



and add them to the project. Then, running from the IDE should reference the
jars automatically. Alternately, on the command line, run with the jars added to
the classpath (-cp) like this: "java -cp .:.crimson.jar:jaxp.jar MyClass".



