CS193J Handout #34
Winter, 2001-02

Final practice problems

Thefinal exam will be at our regularly scheduled exam time: Thu Mar 20" 7:00-10:00 pm. The
exam will bein TCSEQ101.

WE Il have asingle alternate reading of the exam before the regular time — email nick to sign up for
the aternate. Nick will have office hours Wed 3:00-5:00 of exam week to answer questions about
the exam or the sample problems.

Thefinal exam will cover al of the material we have seen this quarter. Most of the exam will be
concerned with coding problems similar to the homeworks. Some of the problems will be
essay/short-answer type on material from lecture. The short answer questions will be right=+1,
blank=0, wrong=-1, so it will not bein your interest to guessif you don't know the answer.

The exam will be 3 hourslong and will be open book, and open note, but you may not use a
computer. Aswith any open-note exam, the questions will probably not be so smple that you can
just look up the answer. Instead, the questions (like the homeworks) will require you to apply the
concepts from lecture to solve small problems.

For a Stanford code-writing exam, familiarity with the topicsis not enough. Thereis not enough
time to re-learn the details during the exam. For a code writing exam, you need to be fluid and
practiced with the code, relying on your notes only for the occasiona detail. This requires practice.
Fortunately, there are many sources of practice problems.

1. Understand all the example code fromin lecture.

2. Understand your own solution code for each homework. The exam will include smaller
but related code-writing problems. Understand the code well enough to write small
solutions starting with ablank sheet of paper. On the exam, we will provide summaries of
any necessary library message prototypes, so you do not need to memorize the interfaces
to thelibrary classes.

For code writing problems, we will not be especially picky about syntax or other basically
conceptually shallow ideas such as getting the exact right name of alibrary method. Instead, the
questions will focus on understanding the core Java concepts.

How To Study For A Code Writing Exam

To study for code-writing exams, take a coding problem for which you have a solution available
(lecture example, sample exam problem) and try to write the solution as you would on an exam
starting with a blank sheet of paper. Trying to write the code, even with errors, will giveyou a
much better understanding of the major concepts than a passive review of the solution code. A
passive review of the problemsis not good preparation for a code-writing exam.

Therest of this handout includes a patchwork of questions from the last few years of exams. The
first problems are from the exam | wrote last year. The other problems are from Julie Zelenski and
Jerry Cain. Our exam will ook alittle different from previous years since we have covered
somewhat different material, but this should give you a good idea of what a code writing exam
looks like. On the real exam, each question will be on its own page so there will be room for you to
write you solutions directly on the exam paper.

Material
The final will cover material from the entire quarter. The exam will focus on mainstream Java
features and classes and will emphasize the material |earned on the homework and presented in

lecture. Problems where we have had a homework on that areawill tend to get harder exam
problems vs. areas mentioned in lecture but without a homework problem. The sorts of things that
you should be prepared to demonstrate knowledge of :

» Javasyntax and language features— primitives, operators, control structures, arrays,
Strings, Collections

» Objects and classes— instance variables and methods, access specifiers, "this’,
congtructors and field initialization, method overloading, static and final modifiers

» Object-oriented design— associating behavior with the object

* Inheritance— subclassing, overriding, superclass/subclass structure, inheritance code
factoring, polymorphism, abstract methods and classes, interfaces

* Inner classes— relationship to outer class, access specifiers, static versus non-static,
anonymous inner classes

» Exceptions— try/catch/finally, throwing an exception, catching exceptions, checked vs
unchecked, exception specifications on method declarations

* Input/output— text streams readers/writers, object streams for serialization

» Concurrency— Thread class, Runnable interface, scheduling issues, race conditions,
mutual exclusion, synchronization, inter-thread communication viawait and notify

» Swing — layouts, JFrame, JComponent, paintComponent(), Graphics, control listeners,
model-view-controller, swing threading, double buffering

» Networking—simple uses of URL and URL Connection
» XML - operating on the in-memory DOM

* Misc (alittle) — Java performance, regular expressions, assert

1. Swing/GUI (20 points)

For this problem, you will write a Graph class. Graph is a subclass of JComponent. Given a
sequence of (X, y) points, pl, p2, ...pn, Graph draws the sequence of lines pl1-to-p2, p2-to-p3, and
so on. The (X, y) points should be drawn with the origin in the lower-l€eft corner, and ignore the
issue of (X, y) pointsthat are larger than the current width or height of the Graph. Just draw all the
lines, and the too-large parts of the drawing will be clipped.

G aph
bounds

pl
p2

p3

origin
(0, 0)

To help you get started, the client code to create and set up the Graph is given in the static main()
below. The Graph should support...

« Congtructor -- takes a pointer to the status JLabel

 add(int x, int y, String text) -- add a point to the Graph. Called by main() to load datainto
the Graph. Each point may have an associated text string, or it may be null. Thetext is
used for mouse clicks.

» Mouse clicks: if the user clickswithin +/-1 pixel of a point and that point has a non-null
text, set the "status' JLabel to display the text. The status label is set up for you by the
starter code.

cl ass Graph extends JConponent ({

/1 provided code: main() creates a JFrane, creates a JLabel,
/1l creates a Graph, reads (x, y, text) out of a file and uses add()
// to add it to the G aph.
public static void main(String[] args) {
JFrame frame = new JFranme(" G aph");
JConponent contai ner = (JConponent) frane. get Cont ent Pane();
cont ai ner. set Layout (new Bor der Layout (6, 6));

JLabel status = new JLabel ();
cont ai ner. add(st at us, BorderLayou. SOUTH);

Graph graph = new Graph(status);
cont ai ner. add(graph, BorderLayout.CENTER);

/1 Assume loop to read file is here, calls add() to add data,
/1 text may be null
int x,y;

String text;
...graph.add(x, y, text)

franme. pack();
franme. setVisible(true);

/1 Your code here
/! add(), ctors, other nethods, ivars, etc.

public void add(int x, int y, String text) {

Sol uti on notes:

*

Qovi ously, you need sone kind of data structure to hold all the points.
An ArraylList is a good choice here.

Each point has an x-coordi nate, a y-coordinate, and sone text (which
could be null). It's probably best to make this into a separate class
(say TextPoint), so you can just add TextPoint objects into the
ArrayList. An alternative is to use Point objects (which just have x
and y), and use these as keys to a HashTable where the texts are
stored. Either nmethod is easier than using two or three ArraylLists to
hold different attributes for each point (although no points were taken
off for doing this).

The constructor needs to initialize the ArrayList (or you'll get
a Nul | Poi nter Exception when you try to add()).

There al so needs to be a MuuseListener that figures out what to do when
the nouse is clicked. |In this case, when a click occurs, we go through
our ArrayList until we find a point that is close enough to the clicking
point, and call JLabel.setText() when a match is found (and the
corresponding text is not null). This should be in the constructor as
wel |

The Iine drawi ng needs to be done in paintConponent(). Al this needs
to dois to iterate through the points and draw the lines.

One subl ety that nany people didn't get right: the origin is at the
bottom | eft corner, not the upper-left corner (which is what Sw ng
assunes). So you need to do some coordi nate-mappi ng. The easiest way

to do this correctly is to nap the coordinates within the add() nethod;
then both the drawi ng and the nouse-clicking will operate under the

new coordi nate system |If you only napped coordi nates in paint Conponent (),
then clicking also needs to do the transform The transformis sinmply

to subract the y value fromthe conponent height:

The correct mapping is (x, y) -> (x, height - vy)

2. Inheritance (10 points)

There are two types of grad-student: Sleepy, Grumpy. Grad students are mostly similar, but alittle
bit different. All grad students have a current happiness factor which is between in 10 and -100
(initialy 0). They dl respond to the flame() message when they are flamed by e-mail. Here'swhat
they do when flamed:

1. Print "ouch" and decrement happiness by 1, unlessit is aready at -100. Sleepy grad
students are alittle different— they go through the above process twice.

2. Then they read their favorite newsgroup to relax (print "reading™). This causes the
happiness factor to go up by 4, although it never goes above 10. In addition, the Grumpy
grad student posts to the newsgroup after reading (print "posting™).

Write the code for Sleepy, Grumpy, and any support classes. Y ou may omit constructors, and don't

worry about the public/private/etc. keywords. Just write the code required by the flame() message,
and use inheritance to minimize code repetition.

Sol ution notes: the class structure should | ook sonmething |ike

class Gad { ... }
class Sleepy extends Grad { ... }
class Grunpy extends Grad { ... }

The Grad superdlass could be abstract or not (the question
did not specify)

There are many ways to inplement flanme() correctly. A solution that does
so wi thout repeating code unnecessarily got full credit.

abstract class Gad {
i nt happi ness;
public Gad() { happiness = 0; }
public void flane() {
ouch();
readi ng();

public void ouch() {
System out. println("ouch");
happi ness- -;
i f (happi ness < -100)
happi ness = -100;

public void reading() {
System out. println("reading");
happi ness += 4;
i f (happi ness > 10)
happi ness = 10;
/* Note: depending on how you interpreted the problem you nmay have
| eft happi ness unchanged if the original value was 7, 8, or 9. */
}

}

cl ass Sl eepy extends Grad {
public void ouch() {
super. ouch();

super. ouch();

}

class Grunpy extends Gad {
public void reading() {
super. readi ng() ;

posting();

public void posting() {
Systemout. println("posting");
}
}

3. Threading (20 points)

For this problem, you will use threading to speed up a decryption process.

Suppose thereis an existing static method i1 nt decrypt (String key) that attemptsa
decryption using the given key. It returns O if the decryption was not successful, or a non-zero int
code on success. The decryption processis very slow.

Write a class SuperCrypt that can use multiple CPUs to do decryption concurrently. As aways,
you are free to add ivars, methods, inner classes, and so on.

* Inits constructor, SuperCrypt takes an array of String keysto try. (code provided)

* The check() method should fork off 4 worker threads. Collectively, the workers should try
to decrypt al the keys. The check() method should return O if al of the decryptsreturn O.
If akey decrypts successfully (non-zero), then check() should return its non-zero code.
Check() should return immediately when anon-zero codeis found.

» When done with one string, each worker should get the next available string from the
array.

» When a successful decrypt isfound, we could interrupt() the other workers. However, we
will not do this. It is acceptable to allow the other workers to continue to run.

class Crypt {
/1 Attenpts to decrypt with the given key.
// Returns O on failure, otherwi se a non-zero success code
public static int decrypt(String key) {...}

}

public class SuperCrypt {
private String keys[];

public SuperCrypt(String[] keys) {
this. keys = keys;
}

public int check() {

Sol ution notes:

M nor errors -1 each, -5 max.

* Run() not public

* | nstantiates instance of crypt() to use decrypt ()

* returns w ong code

* Calls wait/notify() on object without holding lock for it (inside a
synchroni zed(..) {} block or in a synchronized function)

Maj or errors
* Traversed keys array in check() instead of in each thread in a synchronized
fashion (-5)
* Does decryption in groups of four (-2)
* Did not traverse through entire array (-7)
* Did not synchronize keys-array traversal properly (-4)
* Got around synchroni zati on by assigning each thread a specific part of the
key
space (-4)
* | nstanci ated keys. | ength nunber of threads, or did not reuse the four
t hr eads
(-2)
* Check returns after all keys are tried (did not short cut return) -7
* Did code that would have short-cut the return correctly but with m nor
m st ake -2
* Check could return before all keys are tried (did attenpt shortcut)
but have to wait for unncessary decryptions to finish -4
Busy waiting -4
wait () without proper test for condition -4
Did not synchronize the "done" condition properly (-2)
Used fix-time sleeping to wait for "done" -7
Did not wait for proper "done" condition -7
returns fromcheck prematurely -4 (specifically, it should not return from
check until either al
t hreads are done or one of the decrypt is successful. Just testing that the
| ast key has been
consunmed or decrypted is not enough, since that could happen before one of
t hreads decrypting
keys prior to the last key is finished)
* Coul d never return fromcheck -5 to -7 depending on how it happens
* Tried to use interrupt() with join() to short cut the early return however
incorrectly -4
Started nore than four threads at the same time -2
Assunes array references are atonic -0
Calls start() again to rey to restart thread -2
Each thread ran decrypt on every key -10
Call's missing function -2

L T

* %k X X F —

/**

* SuperCrypt.java
*

* Title: Super Cr ypt
* Description: . Inits constructor, SuperCrypt takes an array of
String keys to try.
(code provided)
The check() method should fork off 4 worker threads. Collectively, the

wor kers should try to decrypt all the keys. The check() mnethod shoul d
return O if all of the decrypts return 0. If a key decrypts successfully
(non-zero), then check() should return its non-zero code. Check() should
return i mredi ately when a non-zero code is found.

VWhen done with one string, each worker should get the next avail able
string fromthe array.

When a successful decrypt is found, we could interrupt() the other
wor kers. However, we will not do this. It is acceptable to allow the
ot her workers to continue to run

* @ut hor yl 314

* @ersion

*/

class Crypt {
/1l Attenpts to decrypt with the given key.
/! Returns O on failure, otherw se a non-zero success code
/1 OF COURSE EVERYTH NG HERE | S FAKE!!
private static java.util.Randomr = new java.util.Random();
public static int decrypt(String key) {
for (int i=0; i<5; i++) {
System out. println(Thread. current Thread().get Name() + ":
Decrypti ng
key " + key + ", step " +i);
try {
Thr ead. sl eep(r. nextlnt (1000));
} catch (InterruptedException e) {}

i f (key.equal s("The Key")) {

return 1,
}
return O;
}
}
public class SuperCrypt ({
private String keys[]; /1 track the keys
private int keyldx; /1 which key is being tried next
private int code; /1 final result
private int threadsDone; /1 How many threads/workers has finished

public SuperCrypt(String[] keys) {
this. keys = keys;
}

public int check() {
/] Reset ivars
keyl dx = 0;
code = 0;
t hreadsDone = 0;

/1 Instanciate and start threads
for (int i=0; i<4; i++) {
Thread worker = new Thread() {
/1 Anonynous instance of an inner subclass of thread

// Thread code
public void run() {

String key;
/1 no need to synchronize reading the ivar code
while (code==0 && null !'= (key=getKey())) {
/1 We haven't found the key and we still have keys

/1l to try

int code = Crypt.decrypt (key);

/1 if code is non-zero, we have to wake up the
/1 main thread
if (code '=0) {
set Code(code) ;
}

}

/1 Log this worker as being done
t hr eadDone() ;

s

[/ Start the thread
wor ker . set Name("Worker " + i);
wor ker . start();

}

/1 Wait for the final result
return getFi nal Code();

}

/1 Must be synchroni zed because of wait()
public synchronized int getFinal Code() {
/1 Note that we have to check the nunber of
/1 finished threads instead of checki ng whether
/1 the last key has been consumed or finished checking,
/! because the a non-zero result code may stil
/1 be produced by one of the executing threads!
/1 (Note the case when checking the |last key starts
/1 and/or finishes earlier than some of the other keys.)

/1 W could avoid having a threadsDone ivar if
/1 we send each thread the isAlive() nmessage
/1 however it is not as efficient.

/1 Aso note that the while() loop is technically
/1 unnecessary because in this design no call to
/1 notifyAll() could be a false positive; however
/1 it is still a good practice to leave it in.

/1 There is also a debate on whether the
/1 InterruptedException generated by wait() should be
/1 handl ed inside the while loop or outside the while

/1 loop. It would depend on the semantic of interruption
/1 1n general however it is safer for it to be inside
/1 the | oop
while (code == 0 && threadsDone != 4) {
try {
wai t();

} catch (InterruptedException e) {}

return code;

/1 Must be synchroni zed because of notifyAll()

/1 W use notifyAll () because the condition being

/1 notified on would not change; however since in

/1 this problemonly one thread could be possibly waiting
/1 notify() would be fine.

public synchroni zed void set Code(int code) {

10

t his. code = code;
noti fyAll ();
}

/1 Must be synchroni zed because of increnent
/1 to threadDone and notifyAll ()
public synchroni zed void threadDone() {
t hr eadsDone ++;
if (threadsDone == 4) {
noti fyAll ();
}

}

/1 Must be synchronized to serialize the
/1 traversal of the keys array
public synchronized String getKey() {

if (keys == null || keyldx >= keys.length) {
/1 No keys available or left
return null;

}

return keys[keyl dx++];

}

/1 Main entry point
static public void main(String[] args) {
String [] keys = {"keyl", "key2", "key3", "key4", "key5", "The Key"}
)

Systemout.printin("Final result: " + (new SuperCrypt(keys)). check(5;

4. Networking (20 points)

Suppose you have the Binky class that does some simple networking.

public class Binky {
public Binky(String url) { ... }

publ i c BufferedReader connect() throws Bi nkyException { ... }
}

For the BinkyChecker class below, the readAll() method is given an array of URL s to connect to.
Define readAll() so it forks off aworker thread for each URL. Each worker should create a Binky
for its URL, make a connection, and read all the lines of text fromit. If aworker encounters an
error, it should exit silently. When all of the workers are finished, readAll() should return a
Collection (an ArrayList for example) of all the lines of text the workersread. The lines of text may
bein any order. Usejoin() to wait for the workers. If interrupted, return the strings gathered so far.

Reminder: BufferedReader responds to readLine():
String readLine() throws | CException;

Sol uti on:
public class Bi nkyChecker {
Collection readAl I (String[] urls) {

/1 allocate storage

Thread [] threads = new Thread[urls.length];
result = new ArraylList();

/1 launch all the workers

for (int i=0; i<threads.length; i++) {
threads[i] = new Worker (urls[i]);
threads[i].start();

}
/] wait for themto finish
try {

for(int i=0; i<threads.length; i++) {
threads[i].join();
}

}
catch(InterruptedException e) { }

return(result);

private Arraylist result;

/1 Workers use this to add Iines -- synchronizeed

/1 Note: must synch on the Bi nkyChecker, not thw worker.

private synchroni zed add(String line) {
result.add(line);

}

cl ass Wirker extends Thread {
private Bi nky binky;
private Worker (Bi nky b) {

bi nky = b;
}
public void run() {
try {
Buf f er edReader read = binky. connect ();
String |ine;
while ((line = read.readLine()) !'= null) {
add(line); [// synch add |ine
read. cl ose();
}
catch (Bi nkyException e) { }
catch (1 Oexception e) { }
}

}

5. Misc, parts a-f (30 points)

11

a. Suppose you are adding a capability to the XEdit class from HWA4. Y ou would like to iterate over
the tree, searching for a node of the given name, returning true if found and false otherwise. So for

12

the following XML, searching for node "a" "b" "c" or "foo" will return true, and others will return
false.

<a>
 <c>bl ah bl ah</c>
 <c>yatta yatta</c> <foo>wo0 hoo</foo>

</ a>

Remi nder :

int type = node. get NodeType() -- returns TEXT_NODE, ELEMENT NCDE
String s = node. get NodeNane() -- returns tag nane

NodeLi st list = node. get Chil dNodes();

int len = list.getLength() -- list length

Node child = (Node)list.item(i) -- node fromli st

public bool ean search(Node n, String target) {
i f (n.getNodeNane().equal s(target)) return(true); /'l base case

if (n.getNodeType() == ELEMENT_NODE) ({
NodeLi st |ist = n.getChil dNodes();
int len = list.getLength();
for (int i=0; i<len; i++)
if (search((Node)list.item(i), target)) return(true);
/1 note: break out imediately on found

}

return(fal se);

}

Key issues:

-iterate over children
-recur / conpute correctly
-on found, return right away

equal s vs. == on strings -1

short circuit -1

mssing return(true) -1

m ssing bottomreturn(false) -0

It turns out text and el enent nodes both respond to

get Chi | dNodes() and get NodeNane(), so you can sl oppy

with the node type and it still works.

get Chi | dNodes() on text node -0 -- returns a 0 length collection
get NodeNane() on elemnode -0 -- returns enpty string

b. Suppose the classes A and B are defined, and A isthe superclass of B. True or false: the
following linewill compile.
A a = new B();
True -- this is just basic upcasting (2 points)
C. Suppose you have a constructor of a Swing component that creates and installs alabel and a

button (coded below). Add alistener to the button so that when it is clicked, athread is forked off
that waits 10 seconds or until interrupted, and then sets the text of the label to "hello".

13
Reminder: Thread.deep(milliseconds)

cl ass MyConponent extends JConponent {
public MyComponent () ({

/!l Create and install the button and | abe
JButton button = new JButton("Hello");
add(button);

JLabel | abel = new JLabel ();

add(| abel) ;

/!l YOUR CODE HERE
// add listener to the button

final JLabel tenmp = | abel

butt on. addAct i onLi st ener (
new ActionLi stener() {
public void actionPerfornmed(ActionEvent e) {
Thread t = new Thread() {
public void run() {

try {
Thr ead. sl eep(10000) ;

catch (InterruptedException ignored) {}
SwingUtilities.invokelLater(/1 Note: this is key
(-3)
new Runnabl e() {
public void run() {
tenp. set Text ("hell 0");
}

}

tjstart();
} /1 run()
} /1 ActionListener

)

Key points:

-Create an action listener, override actionPerformed

-Use Thread.sleep to wait

-Use SwingUilities.invokeLater() w runnable, since not on swi ng thread

d. Optimization

Suppose you have a Foo class that contains an int[] array. Thelen ivar marks how full the array is -
- theintsin therange 0..len-1 are valid, and ints beyond that range are not valid. The max ivar
storesthe max int value in the array, or -1 if the array is empty. The computeMax() method below is
correct -- it will compute the correct value of max based on the array. We assume that the array
does not change while computeMax is running (i.e. we only support one thread).

public class Foo {
private int ints[]; /1 an array of ints
private int len;

14
private int max; /1 the current, nax int value in the ints

public void computeMax() {
int i=0;
max = -1,
for (i=0; i<len; i++) {
if (ints[i] > max) max=ints[i];

Here isasecond copy of the outer shell of computeMax() -- keeping the algorithm the same (look
at dl the ints, compute their max) re-write the loop so that it islikely to run faster. (Of course, how
much faster the new version runs will depend on the specific VM and its optimizer.)

Solution: pull ivars into locals

public void computeMax() {
int i=0;

// Solution: don't use ivars, use stack vars
int tLen = |l en;
int tMax = -1;
int[] tints = ints;
for (i =0; i<tLen; i++) {
if (tints[i] > tMax) tMax = tints[i];

// now store back to ivar
max = t Max;
}

Criteria:

5/5: pull two things into |ocals (nust be val ues used every iteration)
-2: pull one thing into |ocal

-4: sonme mnor optimzation

caching ints[i] in a local is not a great optim ztion, since the val ue
is not used very often

e. Suppose we are given aBinky object that supports messages &), b(), and c(), each of which
returns an int. However, &), b(), and c() can each throw a BinkyException. In the foo() message
below, send the &), b(), and ¢() messages to the Binky object, and add the ints they return to the
"sum" ivar. However, if any of the messages throw an exception, the sum should not be changed --
it should be left with the same value it had before foo() was called.

class dient {
private int sum

/1
voi d foo(Binky x) {
/1 YOUR CODE HERE
int temp = 0;
try {
temp += x.a(); /1 these may throw
temp += x.Db();
temp += x.c();

15

sum += tenp; /1 now safe to update

}
catch (Bi nkyException e) {

/1 do not hi ng
}
}

criteria:
-ok if do = instead of +=

f. Suppose you have avery simple Binky classthat just stores a single number that never changes.
Define a countBinkys() method that returns the number of Binky objects created so far. So if the
program has created3 Binky objects, countBinkys() sent to any of them will return 3. Add your
solution into the following structure...

public class Binky {
private int num

public Binky(int num {
this. num = num

public int getNun() {
return(num;

/1 Returns the nunber of binkys created up until now
public int countBinkys() {

Sol uti on:

-add a "static" int count
-count++ in the ctor

- count Bi nkys just returns count

16

Even Older Exam Problems...

1) A new collection class

[Note: This question is not an exact match for this quarter, since we did not use the Hashtable class.
However, the general structure of the question is similar to what would show up on an exam: take a
classthat was used in lecture or on a homework, and ask the students to write code for a variation
on that class.]

The standard Java Hashtable manages a one-to-one mapping of keysto values. For this problem,
you will implement a Multitable object that allows a one-to-many mapping where an entire vector of
valuesis associated with each key. A Multitable could be used for a university database where the
key was the class name and the associated values were the enrolled students or a datebook where
the date was used as the key to retrieve people who were born on that day. For example:

Mil titabl e bdays = new Multitable(); // nap dates to people born that day

bdays. addVal ueFor Key(new Dat e("10/29/80"), "Jill")); // Jill born 1/10/80
bdays. addVal ueFor Key(new Date("11/14/76"), "Mati")); // Mati born 11/14/76
bdays. addVal ueFor Key(new Date("11/14/76"), "Ling")); // add Ling, no repl ace

/1 loop & print all names in table: Jill, Mati, and Ling (in sone order)
Enuneration e = bdays. val ues();
whil e (e. hasMoreEl enents())

System out . println(e.next El enent ());

Making optimal use of the standard built-in classes, the class's underlying storage is a Hashtabl e of
entries using the key as given by the client and a V ector of elements as the associated value. Just as
the ordinary Hashtable, the Multitable expects the key to respond properly to the hashCode() and
equals() methods and can accept any type of Object asavaue.

Although afull Multitable implementation would have many methods, you only need to write a
subset. Y our Multitable class must work for the client code given above. Thus, it needs a zero-
argument constructor, an addVal ueFor Key method that associates anew value with akey, and a
val ues method that returns an Enumeration that iterates over al valuesfor all keysin the table.
The enumeration is freeto visit the valuesin any order it chooses.

The add operationraisesan | | | egal Ar gurrent Except i on if the client triesto store anull key
or null value. The Multitable enumeration raisesaNoSuchEl enment Except i on if asked for the
next el ement when hasM oreElements() would return false.

A few notes:
» Weareinterested in proper use of access specifiersfor this question, so do take care with
them.

» The Enumeration object returned by values should be implemented as an inner/nested
class.

» Theclient can choose to add duplicates (e.g. add “Mati” again on the same date), you do
not need to take any specia action to avoid storing duplicate values.

* Your Multitable should contain only a Hashtable of keys and values and no other
duplicated storage of the keys or values.

» Both the addVaueForKey() and values() method should run in constant time.
 Refer to the sample usage above to see the prototypes of the methods you need to match.

17
1 Solution) A new collection class

public class Miultitable {
private Hashtable table;

public Multitable() {
tabl e = new Hashtabl e();

}
public void addEl enent For Key(Obj ect key, Object value) {
if (key == null || value == null)
t hrow new |11 egal Argunent Exception();
Vector v = (Vector)tabl e. get (key);
if (v ==null) {
v = new Vector();
t abl e. put (key, v);
v. addEl enent (val ue);
}

public Enuneration elenments() {
return new MIEnuneration();
}

private class MIEnuneration i nplements Enuneration {
Enuner ati on vector Enum tabl eEnum

MTEnurer ation() {
t abl eEnum = t abl e. el enent s();
vect or Enum = nul | ;

}

publ i ¢ bool ean hasMoreEl enents() {
return (tabl eEnum hasMoreEl enents() ||
(vectorEnum !'= null && vect or Enum hasMor eEl enents()));

}

public Object nextEl ement() {
if (!hasMoreEl enents()) throw new NoSuchEl ement Excepti on();
if (vectorEnum == null || !vector Enum hasMoreEl enents())
vect or Enum = ((Vector)tabl eEnum next El enent ()). el enent s();
return vect or Enum next El enent () ;

2) Understanding Java code

public abstract class Vegetable {
protected int roots = 7;

public void eat() {
slice();
saute();

}

public static void saute() {
Systemout. println("Red");
}

public abstract void slice();

18

}

public class Potato extends Tuber {

public Potato() {
roots = 59;
}

public void eat() {
if (this.equal s(new Potato()))
Systemout. println("C ange");
el se
Systemout . println("Brown");
super. eat();

}
public class Tuber extends Vegetabl e { public static void saute() {
public Tuber() { Systemout. println("Agqua");
mash() ; }
}
public void nash() {
public void slice() { Systemout.printIn("Pink " + roots);
Systemout. println("Yellow);
mash() ; }
}

public void nmash() {
_ Systemout.printIn("Blue " + roots);
2 Solution) Understanding Java code

Consider the following method that is declared to take aVeget abl e object as a parameter:

voi d bi nky(Vegetable veg) {
veg. eat ();

What are the possible types of objects that veg may be pointing to at runtime? For each possibility,
trace through a call to the bi nky method and show the output that would be printed.

2 Solution

The parameter can be either of class Tuber or Potato. It cannot be a pure Vegetable since that isan
abstract class and thus cannot be instantiated.

For a Tuber, the output is:

Yel | ow
Bl ue 7
Red

For a Potato, the output is:

Pink 7 /1 note the new Potato() that is created fromw thin eat()
Br own /1 default inplenentation of equal s() only conpares pointers
Yel | ow

Pi nk 59

Red /I statics are aways CT-bound

3) Inheritance

On the next page, you'll find code for the starting implementation of a generic Student class. The
standard student responds to messages to study, eat, nap, and take an exam, and tracks the student’s
knowledge and energy level. Both of these are expressed as an integer (higher is better, O or
negative is bad). For example, napping increases the student’ s energy by 2, studying decreases
energy and increases knowledge based on the number of hours studied.

Y ou are going to introduce three classes based on Student: Sleepy, Grumpy, and Happy. All three
should understand all the same messages as Student and have the same genera behavior of eating,
napping, studying, taking exams and tracking their knowledge and energy.

We're interested in what happens when a student prepares for and takes one exam, simulated by
sendingavoi d doOneExan(String subj ect) messageto a Student object. A student first
must get prepared for the exam. An ordinary student feels prepared if their knowledge is 10 or
greater or if their energy is 15 or greater. If the student already feels prepared, they go ahead and
take the exam, otherwise they study some followed by a break to eat and nap, and then do another
check to seeif they fed prepared. The student iterates likes this, studying, eating, and napping, until
they fed prepared, at which point, they take the exam. The student has one chance to pass the exam.
Whether the student passes depends on their knowledge and energy and a bit of randomness, as
shown in the code on the next page. If the student passes the exam, they blow off some steam by
celebrating in their own way.

In addition to the standard behavior described above, the different students have some unique quirks
of their own. Sleepy students are fond of napping. Whenever a Sleepy student naps, they nap twice
aslong as an ordinary student, thus increasing their energy by 4 instead of 2. As part of getting
prepared for an exam, a Sleepy student does the usual exam preparation until ready and then takes
one extra nap. What does a Sleepy student do to celebrate a successful exam? Nap, of course!

Grumpy students are grumpy because they work too hard and stress too much. Whenever you ask
a Grumpy student to eat, they study for “CS193J" instead. Unlike an ordinary student, a Grumpy
student only considerstheir knowledge when deciding if they are ready to take an exam (i.e. energy
doesn’t figure into it). A Grumpy student starts with 10 astheir necessary level of knowledge, but
each time the student takes an exam and doesn't pass, they raise the requirement by 1. So a
Grumpy student who has previoudly failed 4 exams won't consider themselves prepared until their
knowledge is at least 14. Grumpy students celebrate passing an exam by studying for “ CS193K”
to get ahead for next quarter.

Happy students love taking CS classes and they are exceptionally good at them. A Happy student
prepares like an ordinary student, but they always manage to pass the exam for any CSclass (i.e.
any subject beginning with “CS’) no matter what their knowledge or energy level. A Happy
student celebrates passing an exam by eating.

Y our job isto design and implement the three student classes and implement thevoi d
doOneExam(String subj ect) method for all students.

A few notes:
* You arefreeto add any other helper classes and can change or add to the generic Student
classaswdll.

» Weare not going to worry about allocation or initiaization. Y ou do not have to write any
constructors. Where needed you can indicate the starting value for variables.

* You do not need to be concerned with access specifiers for this problem.

* Your most important design goal isto avoid code duplication and place
behavior in the correct classes. It isrecommended you think through the entire design
before making any decisions.

Use this page to make modifications or additionsto the Student class. You arefreeto
changethe code, add variablessmethods, make the class abstract, etc. asdesired. Thereare
two blank pages after thisfor the other three student classes.

public class Student {

public void eat() {
ener gy++;

public void nap() {
energy += 2;

public void study(String subject) {
int nunmHours = (int)(Math.randon()*5); // study up to 5 hours at a tine
know edge += nunHours;
energy -= nunHours;
Systemout.println("Spent " + numHours + " studying for " + subject);

}

publ i c bool ean di dPass(String subject) {
doubl e probabilityO Pass = (know edge*2 + energy)/ 30;
return probabilityOfPass > Math.random(); // true if passed, false if not

}

publ i c bool ean takeExan(String subject) {
System out. println("Taking examfor " + subject);
bool ean passed = di dPass(subject);
Systemout. println("Passed? " + passed);
return passed,

}
protected int know edge = 2; /1l start with lots of studying to do
protected int energy = 10; /1 and sone energy to burn

3 Solution) Inheritance
Obvioudly all the three students should be subclassed from Student. There are no special
commonalties among the three classes that warrant any other intermediate classes:

Student

— A\

Happy glegpy ~ Grumpy

Changesto base Student class:
Change the student classto be abstract.

Add these constants:
protected static final int know edgeNeeded = 10, energyNeeded = 15;

Add these methods:
public void prepare(String subject) {
while (!'ready()) {
st udy(subj ect);
eat();
nap() ;

}
}

public bool ean ready() {
return (know edge >= know edgeNeeded || energy >= energyNeeded);
}

public void doOneExam(String subject) {
prepar e(subj ect);
i f (takeExam(subject))
cel ebrate();

}
public abstract void celebrate();
}
Sleepy class:

public class Sl eepy extends Student

public void prepare(String subject) {
super. prepare(subject);
nap() ;

public void nap() {

super. nap(); /1 nap twice what ordinary student does
super. nap();

}
public void celebrate() {
nap() ;
}
Happy class:
public class Happy extends Student
{
publ i c bool ean di dPass(String subject) ({
return (subject.startsWth("CS") || super.didPass(subject));
}
public void celebrate() {
eat ();
}

Grumpy class:

public class Grunpy extends Student

{
protected int myKnow edgeNeeded = 10;

public bool ean takeExam(String subject) {
bool ean passed = super.takeExam subject);

if (!passed) nmyKnow edgeNeeded++; // if failed, study harder next tine

return passed,

public bool ean ready() {
return (know edge >= myKnow edgeNeeded) ;

}

public void eat() {
st udy (" CS193J");

public void celebrate() {
st udy(" CS193K");

4) Threads and callback interfaces

The MediaTracker is a convenient way to allow an activity (in this case, image loading) to proceed
in a separate thread while providing the client with a means to check on its progress and block until
the activity completes when necessary. Thistype of facility for handling tasksin parallel could be
useful in many other contexts if designed with amore general "task tracking” approach.

To provide this, you will write the TaskTracker class. Once created, a TaskTracker will alow aclient
to pass off actions to the TaskTracker to be run in separate threads. The client will specify the
action to be done in the new thread by passing an object that implements the Runnable interface.
The client can run any kind of task (load an image, read afile, perform a database query, €tc.) ina
separate thread by implementing a Runnable to give to the TaskTracker.

Y our job will be to write the TaskTracker class. There are two public methods you must include:

i nt doTaskl nNewThr ead(Runnabl e cli ent Task)
voi d wai t ForI D(int taskl D)

(Y ou may also need apublic zero-arg constructor if the default one synthesized by the compiler is
not sufficient).

The doTask method dispatches a new, separate thread to execute the client's task in parallel and
immediately returns a unique integer that can be used to identify that task— for example, thefirst
task might be given 0, each successful task the next higher number. ID numbers are never re-used.

The waitForlD blocks until the completion of a previoudy dispatched task identified by its integer
id. If the desired task has aready finished, waitForlD immediately returns, otherwise it will
efficiently block the client's thread until the task thread compl etes and then return. The method
should be designed to alow for the possibility that waitForlD is called more than once per task and
from more than one thread simultaneoudly.

A few notes:
» Weare not concerned with access specifiers for this question, but we do care about
proper use of synchronization.

» Wearetesting your knowledge of exceptions elsewhere, so you do not have to handle the
case wWhere the task given by the client is null or when waitForlD is called with an
inappropriate ID (i.e. aninteger that was not previoudly returned from acall to doTask).

4 Solution) Threads and callback interfaces

a) Thereareacouple of different waysto solve this problem. The two most important requirements
are that you properly synchronize so that you don't mistakenly assign the sameid to two different
tasks and to not busy-wait when blocking until athread completes. Sleeping for abit and then
checking if the thread isAlive is busy-waiting. A much better strategy is to have the task signal back

vianotify to the other threads who are waiting so they don't waste time checking in the meantime.
Y ou can wait and notify on the TaskTracker itself or onindividual objects per thread to be even
more efficient.

public class TaskTracker ({

/1 use a Vector of Bool ean objects, one per id
/1 value is false if not completed, true when thread finishes
private Vector taskStatus = new Vector();

public synchronized int startTask(final Runnable task) {
final int taskld = taskStatus.size(); // use next index in vector
t askSt at us. addEl enent (new Bool ean(false)); // entry starts as fal se
new Thread(new Runnabl e() { /1 wrap Runnabl e obj ect
public void run() {
task. run();
t askFi ni shed(taskld); // after conpleting, update status

}}).start();

return taskld;

}

private synchroni zed void taskFinished(int id) {
t askSt at us. set El enent At (new Bool ean(true), id); // set status to true
noti fyAll(); // alert all waiters that thread has finished

public synchroni zed void waitForTask(int id) {
while (true) {
i f (((Bool ean)taskStatus. el enent At (id)). bool eanVal ue())
return; // entry is vector is true, so task has finished
try { wait();} /1 wait til notified that a thread fini shed
catch (InterruptedException e) {}

}
}

1) True/false (24 points)
[I’ve pared the questions down to the ones that make the most sense for our coverage this
quarter. The questions may be true/false or short-answer. We will us a correct=+1, blank=0,
wrong=-1 grading cheme for the short answer questions, so leave them blank if you don’t know
the answer.]

Answer trueif the statement is always true, false otherwise. The vaue per question issmall, so
don't spend alot of time agonizing over these. Each correct answer is+1, awrong answer is-1
(to discourage guessing), and leaving it blank is O points. Y ou can lose alot of pointsif you are
just guessing, so we recommend answering those that you know and leaving the others blank.

a) Y ou cannot instantiate a Java class which contains an abstract method.
true
C) If a subclass constructor doesn't include a call to the superclass constructor, al of

theinherited fidds will be set to zero.

false, the default ctor of the superclassiscalled

€) Y ou don't need to synchronize multi-threaded accessto avariableif it isonly one
line of code such as; num++;

fal se

fy __ Static methods can throw exceptions.

true

k) Privatevariables are not inherited by subclasses.

false

) Attempting to cal another synchronized method from within a synchronized method

on the same object will deadlock.

false, athread can acquire the lock multiple times

m) When serializing an object, al fields marked transient are skipped.
true
0) The default implementation of the equals() method inherited from Object returns

true when all the fields of the two objects exactly match.

False, the default just does ==

V) In an instance method, it islegal to accessthe private fields of other objects of the
same class asthe receiver (i.e. not just the private fields of "this’).

true

X) An outer class can accessitslink to a non-static named inner class object using the

syntax | nner d assnane. t hi s.

false, the outer object may have many inner objects, so this syntax doesn’t even make sense

4) Threads and networking (24 points)

On the next page, you are given the starting implementation of a URL Race class that alows you to
create anew race from an array of string URLs. When you ask the race object to run the race, it will
dispatch separate threads, one to download each of the URLS. The threads download in parallel.
When athread finishes, it adds the URL to the end of the array of successful or failed URLS
depending on the outcome. When al the threads have finished downloading, the successful and
failed URLs are printed the order they completed from first to last.

The class as given is missing some of itsimplementation and has some errors in handling threads
and synchronization. Y ou are to finish its implementation and correct its problems.

Therequirements are;

* You must fill in the implementation of the downloadURL () method which downloads the
bytes from the specified URL. Don't worry about getting the content length in advance or
fancy block reads, just call the smple single character read() method until you get -1 at EOF.
The method returns the success of the operation. The method returns true if the URL was able

to be accessed and completely downloaded, false if any error occurred (malformed URL, can't
connect to host, 1/0 problems, etc.)

* The class currently has no synchronization. It may be that some code passages need to be
wrapped in synchronized blocks or entire methods may need to be marked synchronized.
Find those areas that require synchronization and make the necessary changesfor it to
properly control access by multiple threads where needed. Y ou should not overzealoudly lock
large regions and inappropriately serialize the race.

* The runRace method currently busy-waits for al the download threads to finish before
printing the results. Thisiswasteful and inefficient. Change the code to use wait and notify to
alow for efficient waiting for the race to end before printing the results.

The code that is here compiles cleanly but may not behave correctly dueto
synchronization problems. You are free to change and augment any parts of this.

You can mark up the code below to indicate changes, but make it very clear what you are
changing so that we under stand your intentions. Thereisanother blank page after this
onefor you to describe other changes you want to make.

public class URLRace

{

protected String[] succeeded, failed;
protected int nunSucceeded, nunfail ed;

protected void printResults()

{

}

Systemout. println("Successes: ");

for (int i = 0; i < nuSucceeded; i ++)
Systemout.println((i+1) + ": " + succeeded[i]);

Systemout.println("Failures: ");

for (int i = 0; i < nunfFailed; i++)
Systemout.printin((i+1) + ": " + failed[i]);

public void runRace(String[] urlsToRace)

{

succeeded = new String[urlsToRace. | ength];
failed = new String[url sToRace. | ength];
nunBucceeded = nunfailed = 0;
for (int i =0; i < urlsToRace.length; i++) {
final String nextURL = url sToRace[i];
Thread t = new Thread(new Runnabl e() {
public void run() { doOneURL(nextURL);}});
t.start(); /1 start one thread per URL

/] wait til all threads done
whi |l e (nunBucceeded + nuntailed != url sToRace. | ength)

printReéuIts(); /1 print the order they finished

protected void doOneURL(String url)

i f (downl oadURL(url))

succdeded[nunSucceeded++] = url
el se

fail ed[nunfail ed++] = url;

}

protected bool ean downl oadURL(String url) {} // needs inplenentation

}
4 Solution) Threads and networking (24 points)

Implement the downloadURL () method:

prot ected bool ean downl oadURL(String url)

{

try {
URL u = new URL(url);

I nput St ream stream = u. openStrean();
while (streamread() !'= -1) ;
return true
} catch (Exception e) { // catch all errors: malforned, read, etc
return false;
}

}

Change the doOneURL () method to assign into the arrays using a synchronized block. We don't
synchronize the entire method because we do not want to serialize the action of downloading! We
also send out a notify when we finish.

protected void doOneURL(String url)
bool ean success = downl oadURL(url);

synchroni zed (this) {
i f (success)
succeeded[nunSucceeded++] = url
el se
fail ed[nunfai | ed++] = url;
noti fyAll(); // within synchronized block on this
}
}

Change the runRace() method to be synchronized and change the end of the method to do a proper
walit for anotify signal:

whi I e (nunBucceeded + nunfailed != urlsToRace.length) { // wait til done

try { wait(); }
catch (InterruptedException e) {}

}
printResults(); // print the order they finished

Alternatively, in adightly better design, we could signal just once only from the last-finished thread
and then just wait once in the runRace method.

Grading (mean for this question:17/24)

There was more variation in the responses to this question. Most were quite good, showing you
learned alot from LinkTester, but there were a so some more troubling ones. Probably the most
common error was forgetting that wait/notify can only be called on an object while within a
synchronized context for that object. Other serious errors including not fixing the race condition
when assigning to the arrays or serializing the entire race by synchronizing the entire doOneURL
or downloadURL methods.

