
Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 1
Course Overview

Introduction to OOP/Java

Manu Kumar
sneaker@stanford.edu

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Agenda

• Introductions
– Instructor
– TA

• Course Overview
– Administrivia and Logistics

• Student Introductions
• Introduction to Java
• OOP/Java

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 4 Handouts for today!
– #1: CS193j – Programming in Java
– #2: Java 1
– #3: OOP
– #4:Java 2

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Staff Introductions

• Intructor: Manu Kumar
– sneaker@stanford.edu
– 650-723-1923
– Office: Gates 266
– Office hours: Monday 4:15 PM – 6:15 PM

• Teaching Assistant: Shankar Ponnekanti
– pshankar@cs.stanford.edu
– 650-725-3053
– Office: Gates 252
– Office hours

• Tuesday 2:15 PM – 4:15 PM in Gates 252
• Wednesday 8:00 PM – 10:00 PM in Sweet Hall

mailto:sneaker@stanford.edu
mailto:sneaker@stanford.edu
mailto:pshankar@cs.stanford.edu

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

CS193J Course Overview

• Java as a second language course
– Teaches programming in Java for people who already

know how to program in C or similar language
• Pre-requisites

– Basic programming background (C/C++/Pascal)
– Problem solving techniques
– Debugging skills
– Basic HTML

• Flavor
– A hands-on course for practitioners

• Requires considerable hands-on development time.

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Credits and Acknowledgements

• Summer Quarter 2003
– Based on previous versions of the course
– Will closely mirror Winter 2003 course
– Re-use materials from previous instructors

• Evolve material based on prior feedback
– Credits

• Nick Parlante (Winter 2003)
• Julie Zelenski (assignments)
• Prior instructors

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Class Structure

• Lectures
– 4:15 PM – 6:05 PM
– Two 50 minute sessions

• 4:15 PM – 5:05 PM
• 5:15 PM – 6:05 PM

• Lectures will provide background for
progamming assignments

• Office hours
– Intended to be hands on office hours

• Theoretical principles
• Programming issues

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Text Book

• Text Book
– No official text

• Java is an open language which is very popular on
the Web and so everything you need is available
on the Web!

– If you must have a text book
• Readers

– Just Java by vad der Linder
– Core Java 2 series by Horstmann

• Reference
– Java in a Nutshell series

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Handouts

• Re-using handouts by Nick Parlante
– Printed copies will be handed out in class
– Posted on course website about 30-60

minutes prior to lecture
• Slide Sets

– No printed copies
– Will mirror handouts
– Will be posted on course website

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Assignments

• 4 individual programming assignments

• Note: This means there is no final exam! ☺

Homework

10%Wednesday, August
13th by 11:59 PM

Thursday, August 7th#4

40%Wednesday, August
6th by 11:59 PM

Thursday, July 24th#3

30%Wednesday, July 23rd

by 11:59 PM
Thursday, July 10th#2

20%Wednesday, July 9th

by 11:59 PM
Thursday, June 26th#1

PercentageDue DateAssigned On

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

P/NC / SCPD Students

• P/NC Students
– Same criteria as students taking the class for a

regular grade except
• May not have to do all parts of the assignment
• Will be indicated on the assignment handouts

– Please indicate that you are a P/NC student
• SCPD Students

– All course information will be on the course website
– We will actively respond to emails to the course alias

(coming up next…)
– Please indicate that you are a SITN student

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Late Submissions

• Deadlines are hard deadlines
– If an assignment is due at 11:59 PM, it will be

considered late if submitted at 12:01 AM.
• BUT…. Three free “late-days”

– Each late day is exactly 24 hours.
– Use your late days wisely.
– Relative weight of assignments indicates their

level of difficulty/work required.
• ½ letter grade penalty for each day late

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Honor Code

• Stanford uses the Honor code system
– http://www.stanford.edu/dept/vpsa/judici

alaffairs/guiding/honorcode.htm
• The fine print…

– The Honor Code is an undertaking of the students, individually and collectively:
• that they will not give or receive aid in examinations; that they will not give or receive unpermitted aid

in class work, in the preparation of reports, or in any other work that is to be used by the instructor as
the basis of grading;

• that they will do their share and take an active part in seeing to it that others as well as themselves
uphold the spirit and letter of the Honor Code.

– The faculty on its part manifests its confidence in the honor of its students by refraining from proctoring
examinations and from taking unusual and unreasonable precautions to prevent the forms of dishonesty
mentioned above. The faculty will also avoid, as far as practicable, academic procedures that create
temptations to violate the Honor Code.

– While the faculty alone has the right and obligation to set academic requirements, the students and faculty
will work together to establish optimal conditions for honorable academic work.

http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/honorcode.htm
http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/honorcode.htm
http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/honorcode.htm
http://www.stanford.edu/dept/vpsa/judicialaffairs/guiding/honorcode.htm

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Collaboration Policy

• Okay to discuss ideas and problem
approaches

• All work must be your own creation
– Not okay to share code or look at other

people’s code
• Always give credit where credit is due
• See handout for details.

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Disability Resource Center

• Stanford Disability Resource Center
– http://www.stanford.edu/group/DRC/

• Please note: no special accommodations
can be made without having the official
forms from the DRC first

http://www.stanford.edu/group/DRC/
http://www.stanford.edu/group/DRC/

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Course Outline

• Introduction to Java
• Arrays, Strings, static
• OOP – encapsulation, inheritance
• OOP in Java – inheritance, abstract superclasses, Interfaces, inner

classes, packages.
• Building GUIs with Swing. Components, drawing, layouts, graphics
• Listeners, buttons, mouse-tracking
• Threads and concurrency. Threads, runnables, critical sections,

synchronization
• Exceptions, I/O, Streams
• Networking
• MVC structure
• Advanced topics: XML, JDBC performance

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Guest Speakers

• Sun’s J2EE Team
– George Grigoryev

• J2EE Senior Product Manager, Java Software
Technologies, Sun Microsystems, Inc.

– August 7th, 4:15 – 6:05 PM

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Student Introductions

• Please say your:
– Name
– Where you are from
– Stanford / non-Stanford affiliation

• eg: Stanford department, undergrad HS Summer visitor,
visiting from another university, company

– What is your objective in taking this class
• SCPD Students

– Please email your response to sneaker@stanford.edu
with the subject: cs193j introduction

mailto:sneaker@stanford.edu

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Request for constant feedback!

• Your feedback is needed to make sure
that the course is on track
– Please feel free to email or talk with us about

the course and let us know how you think it is
going often!

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

10-minute Break!

• Please be back promptly!

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Introduction to Java (Handout #2)

• The Java buzzword-bingo!
– Java is a simple, object-oriented, distributed,

interpreted, robust, secure, architecture-neutral,
portable, high performance, multi-threaded, and
dynamic language.

• Right Language, Right Time
– Kept all the good features of C/C++
– Dumped a lot of the ugliness
– Timing

• Internet boom
• Moore’s Law.

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

The Java Virtual Machine

• The Java Language runs on a “Java Virtual
Machine”
– Java Virtual machine abstracts away the details of the

underlying platform and provides a uniform
environment for executing Java “byte-code”

• The Java compiler (javac) compiles Java code
into byte-code
– Bytecode is an intermediate form which can run on

the JVM
– JVM does the translation from byte-code to machine-

code in a platform dependent way.

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

The Java Platform

App1 App2 App3 App4 App5

Java Virtual Machine

Windows Linux OS X Solaris Linux

Intel PowerPC SPARC

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Language + Libraries

• Core language
– Ints, array, objects, loops and conditionals
– Moderately sized language

• Can run on small devices

• Libraries
– This is where the power of Java really emerges

• String, ArrayList, HashMap, String Tokenizer

– Networking, Graphics, XML, Database connectivity,
Web Services….

– Re-use at it’s best (so far).

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Simple

• Similar to C/C++ in syntax
• But eliminates several complexities of

– No operator overloading
– No direct pointer manipulation or pointer arithmetic
– No multiple inheritance
– No malloc() and free() – handles memory

automatically
– Garbage Collector

• Lots more things which make Java more
attractive.

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Object-Oriented

• Fundamentally based on OOP
– Classes and Objects
– Uses a formal OOP type system
– Lends an inherent structure/organization for how we

write Java programs
• Unlike spaghetti code in languages like Perl

– Efficient re-use of packages such that the
programmer only cares about the interface and not
the implementation

• OOP will be covered in a little more detail later.

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Distributed / Network Oriented

• Java grew up in the days of the Internet
– Inherently network friendly
– Original release of Java came with

Networking libraries
– Newer releases contain even more for

handling distributed applications
• RMI, Transactions

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Robust / Secure / Safe

• Designed with the intention of being secure
– No pointer arithmetic or memory management!
– The JVM “verifier”

• Checks integrity of byte-codes
– Dynamic runtime checking for pointer and array

access
• No buffer overflow bugs!

– SecurityManager to check which operations a piece
of code is allowed to do

– “Sandbox” operation for applets and other untrusted
code

• Limited set of operations or resources made available
• Contrast to ActiveX

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Portable

• “Write-Once Run-Anywhere”
• The Java Virtual Machine becomes the

common denominator
– Bytecodes are common across all platforms
– JVM hides the complexity of working on a

particular platform
• Difficult to implement a JVM
• But simpler for the application developer

• Java does this well

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

High-Performance

• Honestly – thanks to Moore’s Law
• Java performance IS slower than C

• Tradeoff between development time vs. run time
• Additional checks in Java which make is secure and robust

and network aware etc, all have a small cost.

• BUT
– JIT compilation and HotSpot

• Dynamic compilation of bytecode to native code at runtime to
improve performance

– HotSpot optimizes code on the fly based on dynamic
execution patterns

• Can sometimes be even faster than compiled C code!

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Multi-Threaded

• Native support for threading
– We will cover this in a lot of detail

• Basic concept
– The ability to have multiple flows of

control/programs which appear to run at the
same time

• Processes - application level
• Threads – within the application

– JVM uses native threads on operating system
but provides a consistent abstraction for the
developer.

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Dynamic

• Java is “self-aware”
– Java code can look at itself and tell what

interfaces it exports (Introspection)
– Can dynamically load new classes/code at

runtime

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Java Programmer Efficiency

• Faster Development
– More programmer friendly
– Less error prone

• OOP
– Easier to manage large development projects

• Robust memory system
– No pointer arithmetic and manual memory

management. Garbage collector!
• Libraries

– Re-use of code

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Microsoft vs. Java

• Java is platform independent
– Was considered a threat to Microsoft’s

dominance
– Sun vs. Microsoft Law Suit

• Microsoft’s latest response to Java
– C#

• Very similar to Java in structure and style
• Some improvements over Java (which have now

emerged in Java 1.5)
• Some questionable features

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Java is for Real

• The initial hype has died down and things
are more realistic today
– Similar to the economy.

• Java is maturing into a mainstream
language for development
– Here to stay

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Canonical Example

• HelloWorld Application in Java

/**
* The HelloWorldApp class implements an application that
* simply displays "Hello World!" to the standard output.
*/
public class HelloWorldApp {

public static void main(String[] args) {
System.out.println("Hello World!"); //Display the string.

}
}

• Compile: javac HelloWorldApp.java
• Run: java HelloWorldApp

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

OOP (Handout #3)

• Object Oriented Programming
– Map your problem in the real world
– Define “things” (objects) which can either do

something or have something done to them
– Create a “type” (class) for these objects so that you

don’t have to redo all the work in defining an objects
properties and behavior

• Some examples
– Classroom
– Car
– Person

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Procedural vs. OOP

• Nouns refer to Data
• Verbs refer to Operations

• Procedural Languages
– C/Pascal etc.
– Verb-oriented
– No formal noun-verb structure (not enforced by

language or compiler)
• OOP languages

– Operations are performed by/on “Actors” (objects)
which have names and store data (nouns)

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Objects

• Storage
– Properties
– Runtime state

• Behavior
– Set of operations that can be performed by an object,

usually on itself
• Class

– Every Object belongs to a class
• Objects are anthropomorphic

– Think of them as being alive (actors) that can do
something

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Class

• Exists once
– The Class is the template for the object
– Defines the storage and behavior of the

objects
• Every object must belong to a Class

– The object is an instance of a class
• Example

– Person is a class
– Bart Simpson is an instance of class Person

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

String Example

String class

length() {
 ---;
 ---;
}

reverse() {
 ---;
 ---;
}

“hello”

String

“hi”

String

length()

5

Sending the length()
message to a String
object...

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Message / Receiver

• Objects are manipulated by sending them
messages
– The object itself is therefore a receiver of

messages
– The message is usually a “method invocation”

• Example:
String name = “bart simpson”;
name.reverse();

// name is receiver, reverse is the message

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Methods / Message->Method Resolution

• Method
– Executable code defined in class
– It is the behavior/operation
– Objects of a class can execute all the methods that

class defines
• Suppose a message is sent to an object ---

x.reverse();
– 1. The receiver, x, is of some class -- suppose x is of

the String class
– 2. Look in that class of the receiver for a matching

reverse() method (code)
– 3. Execute that code "against" the receiver-- using its

memory (instance variables)

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

OOP Design – Anthropomorphic/Modular

• Objects are responsible for their own state
• Objects can send messages to each other
• The object/message paradigm makes the

program more modular
– Each class deals with it’s own implementation

details
– The other classes only need to know the

interface it exposes

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

OOP Design Process

• Think about the objects that make up an application
• Think about the behaviors or capabilities those objects

should have
• Endow the objects with those abilities as methods
• If a capability does not occur to you in the initial design,

that's ok. Add it to the appropriate class when needed –
it just needs to go in the right class

• Co-operation
– Objects send each other messages to co-operate

• Tidy style
– Experience shows that having each object operate on its own

state is a pretty intuitive and modular way to organize things.

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

OOP Design Exercise

• You are asked to design the game of
Chess. What are some of the classes you
would create and what properties would
they have?

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

OOP Design Exercise Trivial Solution

• The following is a very high level and trivial
solution

• Board
– Black squares and white squares

• Pieces
– Position on the board
– Dead or alive
– Valid moves
– Move to new location

• Players
– 2 instances (black and white)

Tuesday, June 24th, 2003 Copyright © 2003, Manu Kumar

Summary!

• Today
– Course Introduction
– Student Introductions
– Introduction to Java
– OOP concepts

• To Dos
– Write a HelloWorld program in Java, compile

it and run it on Leland machines.
– SITN students: email introductions

	CS193J: Programming in JavaSummer Quarter 2003Lecture 1Course OverviewIntroduction to OOP/Java
	Agenda
	Handouts
	Staff Introductions
	CS193J Course Overview
	Credits and Acknowledgements
	Class Structure
	Text Book
	Handouts
	Assignments
	P/NC / SCPD Students
	Late Submissions
	Honor Code
	Collaboration Policy
	Disability Resource Center
	Course Outline
	Guest Speakers
	Student Introductions
	Request for constant feedback!
	10-minute Break!
	Introduction to Java (Handout #2)
	The Java Virtual Machine
	The Java Platform
	Language + Libraries
	Simple
	Object-Oriented
	Distributed / Network Oriented
	Robust / Secure / Safe
	Portable
	High-Performance
	Multi-Threaded
	Dynamic
	Java Programmer Efficiency
	Microsoft vs. Java
	Java is for Real
	Canonical Example
	OOP (Handout #3)
	Procedural vs. OOP
	Objects
	Class
	String Example
	Message / Receiver
	Methods / Message->Method Resolution
	OOP Design – Anthropomorphic/Modular
	OOP Design Process
	OOP Design Exercise
	OOP Design Exercise Trivial Solution
	Summary!

