
Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 3
Collections and More OOP

Manu Kumar
sneaker@stanford.edu

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last time (a somewhat jumpy introduction to…)
– OOP in Java (Student Example)
– Explore more Java features

• Primitives
• Arrays
• Multi-Dimensional Arrays
• String Class
• StringBuffer Class
• Static keyword

– OOP Design
• Encapsulation

– Interface vs. Implementation
• Client Oriented Design

• To Dos
– HW1: Pencil Me In

• Due before midnight Wednesday July 9th, 2003

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 3 Handouts for today!
– #8: Collections
– #9: OOP2 - Inheritance
– #10: OOP3 – Abstract Superclasses

• Next time
– Complete OOP

• Probably won’t get to all of it today
– Start Drawing/GUI

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Today

• Java Collections
– ArrayList example

• OOP
– Inheritance

• Grad example
– Abstract Superclasses

• Account example

• Java Interfaces
• You will have all you need for HW#1

– By the end of today’s lecture.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Collections (Handout #8)

• Built-in support for collections
– Similar to STL in C++

• Collection type
– Sequence/Set
– Example ArrayList

• Map type
– Hashtable/dictionary
– Example HashMap

• Collections store pointers to objects!
• Use inheritance and interfaces
• Read

– http://java.sun.com/docs/books/tutorial/collections

http://java.sun.com/docs/books/tutorial/collections
http://java.sun.com/docs/books/tutorial/collections

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Collection Design

• All classes implement a similar interface
– add(), size(), iterator()…
– Easy learning curve for using Collections
– Possible to swap out the underlying implementation

without significant code change
• Implemented as pointer to Object

– Similar to using a void * in C
– Require a cast back to the actual type
– Example

• String element = (String)arraylist.get(i)

• Java checks all casts at run-time

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Collection Messages

• Basic messages
– constructor()

• Creates a collection with no elements
– size()

• Number of elements in the collection
– boolean add()

• Add a new pointer/element at the end of the
collection

• Returns true is the collection is modified.
– iterator()

• Returns an Iterator Object

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Additional Collection Messages

• Utilities
– Additional useful methods
– boolean isEmpty()
– boolean contains(Object o)

• Iterative search, uses equals()
– boolean remove(Object o)

• Iterative remove(), uses equals()
– Boolean addAll(Collection c)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Iterators

• Used to iterate through a collection
– Abstracts away the underlying details of the

implementation
• Iterating through an array is the same as a binary

tree

• Responds to
– hasNext() - Returns true if more elements
– next() - Returns the next element
– remove() - removes element returned by

previous next() call.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Working with Iterators

• Not valid to modify a collection directly
while an iterator is being used!
– Should not call collection.add() or

collection.remove()
• OK to modify the collection using the

iterator itself
– iterator.remove()

• Why?
– Motivation for concurrency issues later in the

course

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

ArrayList

• Most useful collection
• Replaces the “Vector” class
• Can grow over time
• Methods

– add()
– int size()
– Object get(int index)

• Index is from 0 to size() -1
• Must cast to appropriate type when used.

– iterator()
• We’ll see an ezample!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

ArrayList Demo: constructor

import java.util.*;

/*
The ArrayList is replaces the old Vector class.
ArrayList implements the Collection interface, and also
the more powerful List interface features as well.
Main methods:add(), size(), get(i), iterator()
See the "Collection" and "List" interfaces.
*/
public static void demoArrayList() {

ArrayList strings = new ArrayList();

…

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

ArrayList Demo: adding/size

// add things...
for (int i= 0; i<10; i++) {

// Make a String object out of the int
String numString = Integer.toString(i);
strings.add(numString); // add pointer

to collection
}

// access the length
System.out.println("size:" + strings.size());

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

ArrayList Demo: looping

// ArrayList supports a for-loop access style...
// (the more general Collection does not

support this)

for (int i=0; i<strings.size(); i++) {
String string = (String) strings.get(i);
// Note: cast the pointer to its actual class
System.out.println(string);

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

ArrayList: iterating

// ArrayList also supports the "iterator" style...

Iterator it = strings.iterator();
while (it.hasNext()) {

String string = (String) it.next(); // get and cast
pointer

System.out.println(string);
}

// Calling toString()
System.out.println("to string:" + strings.toString());

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

ArrayList Demo: removing

// Iterate through and remove elements
// get a new iterator (at the beginning again)

it = strings.iterator();
while (it.hasNext()) {

it.next(); // get pointer to elem
it.remove(); // remove the above elem

}

System.out.println("size:" + strings.size());
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

ArrayList Demo: output

/* Output...
size:10
0
1
2
3
4
5
6
7
8
9
to string:[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
size:0

*/

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP – Inheritance (Handout #9)

• OOP so far
– Modularity
– Encapsulation

• Today
– Open Pandora’s box

• Inheritance
• Abstract Super Classes

• Warning
– True good uses of inheritance are rare
– Use it only where it is really appropriate.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Hierarchy

• Classes are arranged in a tree hierarchy
– A class’ “superclass” is the class above it in

the hierarchy
– Classes below is are “subclasses”

• Classes have all the properties of their
superclasses
– General – towards the root (top)
– More specific – towards the leaves (down)

• NB: In Computer Science trees grow upside down!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Example

Object

Animal

Bird

Duck

...

...

...

...

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inheritance

• The process by which a class inherits the
properties of its superclasses
– Methods
– Instance variables

• Message-Method resolution revisited
– Receive message, check for method in class
– If found, execute
– Check for method in superclass
– If found, execute, if not, repeat this procedure
– Basic idea: Travel up the tree.

• Result:
– A class automatically responds to all the

messages and has all the storage of superclasses

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

“Overriding”

• When an object receives a message
– It checks it own methods first
– Then check the superclass’ methods

• The first method in the hierarchy takes
precedence
– We can add a method with the same name as in the

superclass in the class
– The code of the superclass will not be executed

• It is effectively “overridden” i.e. intercepted

• In C++ runtime overriding is an option invoked
by the “virtual” keyword.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Polymorphism

• Do not be intimidated by the big word
– It’s a simple concept
– Basic idea: “it does the right thing”

• An Object always knows its true class at
runtime
– The MOST specific method found for the

object is executed.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Polymorphism example

• Shape is a superclass of Rectangle
– Shape.drawSelf() and Rectangle.drawSelf()

• Code:
Shape s;
Rectangle r = new Rectangle();
s = r;
s.drawSelf()

• Which method will get execute?
Shape.drawSelf() or Rectangle.drawSelf()?

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP Glossary

• OOP Class Hierarchy
• Superclass
• Subclass
• Inheritance
• Overriding
• isA

– the subclass is a instance of the superclass

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Horse/Zebra Example

• Hierarchy of all the animals
– Need to add in Zebra

• Options
– Define zebra from scratch

• Bad idea – mutlitple copies of code.
– Locate the Horse class and subclass it to

create the Zebra class
• Zebra will inherit most of the characteristics of a

horse
• Override or add additional features as needed

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Grad Example

• Add Grad as an extension to the Student class
from previous lecture.
– yearsOnThesis – a count of the number of years

worked on the thesis
– getStress() – overridden to be different

• 2 * the Student stress + yearsOnThesis

• Grad is everything that a student is
– Has additional or some different properties

• Grad is “more specific”
– Grad (subclass) has more properties, and is more

constrained that Student (superclass)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student/Grad Design Diagram

Student
 •units
 -ctor
 -get/set Units
 -getStress

Grad
 •yearsOnThesis
 -ctor
 -get/set YOT
 -getStress (override)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Simple Inheritance Client Code

• Instantiation
– Student s = new Student(10);
– Grad g = new Grad(10, 2); // ctor takes units and yot

• Usage (normal)
– s.getStress(); // (100) goes to Student.getStress()

• Usage (inheritance)
– g.getUnits(); // (10) goes to Student.getUnits()

• Usage (overriding)
– g.getStress(); // (202) goes to Grad.getStress()

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Clarifications and Reminders

• An Object never forgets it’s Class
– The receiver always knows it’s most specific

class
• Student s; in the face of inheritance

– No: “s points to a Student object”
– Yes: “s points to an object that responds to all

the messages that Students respond to”
– Yes: “s points to a Student, or a subclass of

Student”

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP Pointer Substitution

• A subclass isA superclass
– A subclass object can be used when you are

expecting a superclass
– The subclass has everything the superclass has and

more (not less!)
• Compile time error checking

– Compiler will only allow code in which the receiver
respond to the given message

– Implemented as loose checking since sometimes the
exact class is not known (Student or Grad both work)

• Run time error checking
– More strict. Receiver knows exactly which class it is.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Pointer Substitution Example

• A pointer to a Grad object be assigned to
Student pointer.
– Student s = new Student(10);
– Grad g = new Grad(10,2);
– s = g; // ok -- subclass may be used in place

of superclass
• The reverse is not allowed however

– Student s = new Student(10);
– Grad g = new Grad(10,2);
– g = s; // NO, does not compile

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Example of method calls

Student s = new Student(10);
Grad g = new Grad(10, 2);

s = g; // ok

s.getStress();
// (202) ok -- goes to Grad.getStress() (overriding)

s.getUnits();
// (10) ok -- goes to Student.getUnits (inheritance)

s.getYearsOnThesis();
// NO -- does not compile (s is compile time type Student)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Downcast

• Sometimes the programmer can give the
compiler more information
– Done by providing a more specific cast around a less

specific object
– ((Grad)s).getYearsOnThesis();

• Downcast
– Makes a more specific claim

• All casts are checked at runtime
– Will throw ClassCastException if there is a problem
– In C, the program would crash unpredictably

• In general: Downcasting is bad style!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Student/Grad Memory Layout

• Implementation detail
– In memory, instance variables of the subclass are

layers on top of the instance variables of the subclass
• Result

– A pointer to the base instance of the subclass can be
treated as if it were a superclass object

– A Grad object looks like a Student object

units

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inheritance Client Code

Student s = new Student(10);
Grad g = new Grad(15, 2);
Student x = null;

System.out.println("s " + s.getStress());
System.out.println("g " + g.getStress());

// Note how g responds to everything s responds to
// with a combination of inheritance and overriding...
g.dropClass(3);

System.out.println("g " + g.getStress());

/*
OUTPUT...

s 100
g 302
g 242

*/

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inheritance Client Code

// s.getYearsOnThesis(); // NO does not compile

g.getYearsOnThesis(); // ok

// Substitution rule -- subclass may play the role of superclass
x = g; // ok

// At runtime, this goes to Grad.getStress()
// Point: message/method resolution uses the RT class of the receiver,
// not the CT class in the source code.
// This is essentially the objects-know-their-class rule at work.
x.getStress();

// g = x; // NO -- does not compile,
// substitution does not work that direction
// x.getYearsOnThesis(); // NO, does not compile

((Grad)x).getYearsOnThesis(); // insert downcast
// Ok, so long as x really does point to a Grad at runtime

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

isIrate() example

• isIrate() method in the Student Class
– Returns true is stress > 100

• In the Student Class:
public boolean isIrate() {

return (getStress() > 100);
}

• What happens with the following client code:
Student s = new Student(...);
Grad g = new Grad(....);
s.isIrate();
g.isIrate();

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

How g.isIrate() works…

• g known that is a Grad Object
• It looks for an isIrate method

– Not found, so climbs up the tree to the Student class
– Method found in Student class

• isIrate() has a call to getStress()
– Since g knows it is a Grad Object (and it doesn’t

forget this!) it will call the Grad.getStress()
– Grad.getStress() in turn calls Student.getStress()!!

• We will see this when we examine the implementation code!

• Bottom line: it does the right thing!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

“Pop-Down” rule

• The reciever knows it’s class
• The flow of control jumps around different

classes
• No matter where there code is executing the

receiver knows its class and does the
message method mapping correctly for each
message!

• Example
– Receiver is the subclass (Grad), executing a method

in the superclass(Student)
– A message send that Grad overrides will “pop-down”

to the Grad definition as in the case of getStress())

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

super.getStress()

• The “super” keyword is used in methods and
constructors to refer to code in the superclass
– Calling super.getStress() in the Grad class would

execute the code for getStress() in the Student Class
– Think of super as a directive to the message method

resolution process.
• Start searching one level higher.

• Allows the subclass to not have to rewrite the
code
– Re-use the code in the superclass and add to the

functionality

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Continue on Lecture 4…

• Continued on Lecture 4…

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Summary

• Today
– Java Collections

• ArrayList example
– OOP

• Inheritance
– Grad example

• Assigned Work Reminder:
– HW #1: Pencil Me In

• Due before midnight Wednesday, July 9th, 2003

	CS193J: Programming in JavaSummer Quarter 2003Lecture 3Collections and More OOP
	Recap
	Handouts
	Today
	Collections (Handout #8)
	Collection Design
	Collection Messages
	Additional Collection Messages
	Iterators
	Working with Iterators
	ArrayList
	ArrayList Demo: constructor
	ArrayList Demo: adding/size
	ArrayList Demo: looping
	ArrayList: iterating
	ArrayList Demo: removing
	ArrayList Demo: output
	OOP – Inheritance (Handout #9)
	Hierarchy
	Example
	Inheritance
	“Overriding”
	Polymorphism
	Polymorphism example
	OOP Glossary
	Horse/Zebra Example
	Grad Example
	Student/Grad Design Diagram
	Simple Inheritance Client Code
	Clarifications and Reminders
	OOP Pointer Substitution
	Pointer Substitution Example
	Example of method calls
	Downcast
	Student/Grad Memory Layout
	Inheritance Client Code
	Inheritance Client Code
	isIrate() example
	How g.isIrate() works…
	“Pop-Down” rule
	super.getStress()
	Continue on Lecture 4…
	Summary

