STANFORD UNIVERSILY

CS193J: Programming in Java
Summer Quarter 2003

Lecture 4
OOP Inheritance, Abstract classes, Interfaces

Manu Kumar
sneaker@stanford.edu

 Lasttime

— Java Collections
* |terators
« ArrayList example

— OOP

* Inheritance
— Overriding
— Polymorphism
— “Pop-down” rule
— Downcasting

« Grad example

e ToDos

— HW1: Pencil Me In
* Due before midnight Wednesday July 9t 2003

STANFORD UNIVERSILY

Handouts

* 1 Handouts for today!
—#11: Drawing in Java

Vﬁ‘ STANFORD UNIVERSITY

e 2 T O d a y
B

Continue with OOP/Inheritance
— Pop-down rule

— Constructors

— instanceOf

— Grad example

Abstract superclasses

— Account example

Java Interfaces
— Moodable example

Today or next time
— Start Drawing/GUI

STANFORD UNIVERSILY

“Pop-Down” rule

* The reciever knows it's class

* The flow of control jumps around different
classes

 No matter where there code is executing the
receiver knows its class and does the

message->method mapping correctly for each
message!

 Example

— Receiver is the subclass (Grad), executing a method
In the superclass(Student)

— A message send that Grad overrides will “pop-down”
to the Grad definition as in the case of getStress())

STANFORD UNIVERSILY

@ A super.getStress()

* The "super” keyword is used in methods and
constructors to refer to code in the superclass

— Calling super.getStress() in the Grad class would
execute the code for getStress() in the Student Class

— Think of super as a directive to the message—->method
resolution process.
« Start searching one level higher.
* Allows the subclass to not have to rewrite the
code

— Re-use the code in the superclass and add to the
functionality

STANFORD UNIVERSILY

Subclass Constructor

« Subclass needs a constructor

— Should take arguments for the superclass and the
class itself

— Needs to pass on the arguments for the superclass to
the constructor for the superclass

» Done by called using a special syntax: super(...) in the first
line of the constructor

 Note:

— If no superclass constructor is specified, the default
constructor will be called

* Every class needs its own constructors with the
arguments spelled out

— In a way constructors are not inherited and must be
spelled out

STANFORD UNIVERSILY

Multiple constructors (this())

* A class can have multiple constructors with
differing parameters

— Often used to provide a default constructor which
uses default arguments

« Can re-use the code for the constructors by
using this(...)
« Example:

public Grad() {
this(10, 0);

}
public Grad(int units, int yot) {

}

STANFORD UNIVERSILY

iIntanceof Operator

Special operator which may be used to check
the runtime type of a pointer

Example
— if (x instanceof Grad) {....}

« Using instanceof with a null returns false

 Note:

— Using instanceof is generall an indication of a design
flaw

— Use sparingly, only when it is really warranted (for
example in dynamic class loading)

STANFORD UNIVERSILY

Grad Implementation Code

 Complete code included in handout

« Walk through of the code...

STANFORD UNIVERSILY

@ P Using Inheritance

* Most common style:
— Have a superclass with given features

— Need a class which has most of the features,
but is more contrained or slightly different

— Appropriate time to subclass and use
inheritance/overriding to reuse code.

* Working with library code
— Subclass off a library class
— Inherit 90% of the standard behavior
— Override a few key methods for the rest

STANFORD UNIVERSILY

OOP - Abstract Superclass (Handout #10)

« OOP

— Encapsulation / Modularity
— Client Oriented Design
— Inheritance
* Polymorphism
« Abstract Superclass
— Factor common code up

— Example
» AbstractCollection class in Java libraries
« Account example that we will be doing (coming up!)

« Can apply the "abstract” keyword to any
method
— public abstract void mustimplement();
— Note: no { } and no code!

 Abstract method

— Defines name and arguments
— No implementation!

— Implementation MUST be provided in the
subclass!

« Can apply the "abstract” keyword to a
class
— public abstract class Account{ ...

A class that has one or more abstract
methods is abstract

 Abstract classes can NOT be instantiated

— Cannot do: new Account()
— Only subclasses can be instantiated

 Used to factor out common code!
" Thursday, June 26" 2003 Copyright ©2003, Manu Kumar

* A common superclass for several
subclasses

* Factor up common behavior

 Define the methods all the subclasses
respond to

 Methods that subclasses should
Implement are declared abstract

* |[nstances of the subclasses are created,
not of the superclass

« Common Superclass
— Factor common behavior up to the superclass

— Superclass sends itself messages to invoke various parts of the
behavior

« Will rely on the “pop-down” behavior to work correctly!

« Special subclasses
— As short as possible
— Rely on the superclass for common behavior

— Override key methods to cusotmize behavior with minimal code
» May use super.foo()

— Rely on pop-down behavior to do the right thing!

 Example

— JComponent in the Java Swing library
« We will get into this later

STANFORD UNIVERSILY

Account Example

 Problem details:

You need to store information for bank accounts

Assume that you only need to store the current balance, and the
total number of transactions for each account.

The goal for the problem is to avoid duplicating code between
the three types of account.
An account needs to respond to the following messages:
 constructor(initialBalance)
+ deposit(amount)
» withdraw(amount)
« endMonth()

Apply the end-of-month charge, print out a summary, zero the
transaction count.

* Types of Accounts

— Normal
e Fixed $5.0 fee at the end of the month

— Nickle ‘n Dime

« $0.50 fee for each withdrawal charged at the end
of the month

— Gambler
« With probability 0.49 there is no fee

« With probability 0.51 the fee is twice the amount
withdrawn

STANFORD UNIVERSILY

@@ Design process

* Factoring
— Put common behavior in one place

— Subclasses are used to implement the
specific deviation from the common behavior

 Abstract methods

— Provide prototypes for Abstract Methods to be
iImplemented by subclasses

Account

*pbal ance

*transacti ons

- deposi t

-W t hdr aw

-endMont h

-endMont hChar ge (abstract)

Fee Ni ckl eNDI ne Ganbl er
- endMont hChar ge *Wi t hdr awCount -wW t hdr aw
-W t hdr aw - endMont hChar ge

- endMont hChar ge

STANFORD UNIVERSILY

7 "M Account Code walk through

« Complete code is included in your handout

« Code walk through...

STANFORD UNIVERSILY

@ M Account example: Points of note

« Gambler.withdraw() uses super.withdraw()
to decrement balance

* Account.endMonth() does a popdown by

sending itself the endMonthCharge()
message

» Account.main() uses polymorphism

— The right method gets called

— Pop-down to the right implementation of
withdraw depending upon the runtime type of
the recelver.

» Java does not support multiple inheritance

— This is often problematic
« What if we want an object to be multiple things?

e |Interfaces

— A special type of class which
» Defines a set of method prototypes

* Does not provide the implementation for the
prototypes

* Can also define final constants

STANFORD UNIVERSILY

Java Interfaces

A Class

— Can “extend” only one class i.e. only one superclass
— Can “implement” multiple interfaces!

« Class Server implements Pingable
— Server is a class
— It implement the Pingable interface

— Server MUST provide implementations for all the
method prototypes in the Pingable interface

— The Server Object can serve as a substitute wherever
we want a Pingable Object.
« Similar to a superclass

* Lightweight
— Allow multiple classes to respond to a

common set of messages but without the
Implementation complexity.

« Similar to Subclassing but...
— Good news

« Class has only one superclass
« Can implement multiple interfaces

— Bad news:

* Interface only gives the method definition and not
the implementation

STANFORD UNIVERSILY

Interface Example

» Special keyword ‘interface’

» Similar to defining a class, but instead use
the keyword interface

* Methods are empty (no { and } or code)

 Example
public interface Moodable {
public Color getMood();

// interface defines getMood() prototype
// but no code

}

STANFORD UNIVERSILY

Implementing an Interface

* “Implements” keyword

— Similar to extend, but followed by a comma
separated list

 Example

public class Student implements Moodable {
public Color getMood() {
if (getStress()>100) return(Color.red);
else return(Color.green);

}

/] rest of Student class stuff as before...

 Moodable is like an additional superclass
of Student

— It is possible to store a pointer to a Student Iin
a pointer of type Moodable

 Example

Student s = new Student(10);
Moodable m = s; // Moodable can point to a Student
m.getMood();// this works

 \We will see more of this later...

* You now know
— Basic Java language constructs
— OOP principles
— OOP in Java

 Next

— Drawing in Java
« Java Swing
« JComponent/Drawing
« LayoutManagers

STANFORD UNIVERSILY

X ¥ Java GUI on Screen

 How do you put a GUI on the screen?
— Create a window (aka Frame) object

— Install components
» Labels, buttons, etc

— System manages the window and
components by sending notification for user
events

* Drawing clicking typing
— Components draw themselves

STANFORD UNIVERSILY

OOP GUI Systems

* OOP drawing vs. 106 drawing
— 106:

 Just start drawing when you want and the pixels
show up

* Requires re-inventing the wheel each time!

— OOP

* Build on a framework of GUI Classes
— Collection of GUI elements

» Object which correspond to visual elements
— Anthropomorphic — draw themselves

« Send messages in order to have different results
on the screen

 Library Class Hierarchy

— Extensive, pre-built inheritance hierarchy of classes
for common problems
« Drawing, controls, windows, scrolling

— Engineered to work together
« But that also means there is a slight learning curve

« System: Event = Notifications

— Background task ("System”) manages bookeeping
and orchestration of windows and events

— “User Events” — clicking, typing etc happen in realtime
— System manages an “event queue”

* |nstantiate library classes (EASY)

— Simply requires reading the APl documentation and
some understanding of their design

« Subclass library classes (HARD)

— Used to introduce custom behavior

* Inherit, override
— Requires deeper understanding of the superclass
— Relies on “pop-down” feature of OOP

— Example:

» Subclass JComponent and override painComponent() to
provide drawing code

« Subclass JButton so it beeps on being clicked

* Abstract Windowing Toolkit
— Included in first release of Java

— Plagued with implementation problems

— Native peers

» Used wrapper classes for native GUI components
of the operating system

« Advantage

— Same look and feel as on the native platform

« Disadvantage
— Hard to implement reliably
— Consistency issues across platforms

* Replacement/Enhancement for AWT
— aka Java Foundation Classes

— Implemented in Java
* rt.jar contains classes for Swing
« Same on all platforms

— Build on AWT primitives
— 10x more classes, depth and functionality
— Pluggable look and feel

* Interface can look like the native platform
« Dynamically switchable look and feel

perating System+ 1ts native GJ

* We will be using Swing
— AWT still used in limited way

e Themes

— Things draw themselves when sent the right
messages

« Anthropomorphic Objects

— Layout Manager

« Used to arrange the size and position of
components on the screen

 We will see more of this soon

STANFORD UNIVERSILY

Introduction to Swing classes

« JComponent
— Swing analog of the Object class
— Everything inherits from JComponent
— Defines the basic notions of geometry

 JLabel

— Built in JComponents that displays text
— Example: new JLabel(*Hello World!);

* JFrame
— A single window

— Has a “content pane” JComponent that can hold other
components

« frame.getContentPage()
— Closing a frame simply hides it

STANFORD UNIVERSILY

a
. Content Pane / Layout Manager

* Content pane is a place holder

— An empty board where you can place
components

— Use add() to put components on the content
pane

* Content pane uses a “Layout Manager”

— Programmer provides guidelines for how the
interface should look by choosing the correct
layout manager

— LayoutManager determines the size and
positioning of components on the contentpane

STANFORD UNIVERSILY

FirstFrame example

=

First Frame

Hello World. Another Label.
Klaatu Barada Niktol

B O O First Frame

Hello World. Another Label.

Klaatu Barada Nikto!

4

!

Ok

STANFORD UNIVERSILY

FirstFrame Code: getting started

Il FirstFrame.java
I*
Demonstrates bringing up a frame with some labels.
*
import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.”;
public class FirstFrame extends JFrame {
public FirstFrame(String title) {
super(title); /Il superclass ctor takes frame title

I/l Get content pane -- contents of the window
JComponent content = (JComponent) getContentPane();

STANFORD UNIVERSILY

FirstFrame Code: adding components

Il Set to use the "flow" layout
Il (controls the arrangement of the components in the content)
content.setLayout(new FlowLayout());

/I Background color is a property of all components --
Il set it to white
content.setBackground(Color.lightGray);

Il Use add() to install components
content.add(new JLabel("Hello World."));
content.add(new JLabel("Another Label."));
content.add(new JLabel("Klaatu Barada Nikto!"));
content.add(new JButton("Ok"));

STANFORD UNIVERSILY

FirstFrame example: finishing touch

Il Force the frame to size/layout its components
pack();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)

/Il Java 1.3 or later
setVisible(true); /I make it show up on screen

public static void main(String[] args) {
new FirstFrame("First Frame");
}

}
~ Thursday, June 26", 2003 Copyright © 2003, Manu Kumar

STANFORD UNIVERSILY

Summary

 Today

— Continue with OOP/Inheritance
* Pop-down rule
» Constructors
* instanceOf
« Grad example

— Abstract superclasses
« Account example

— Java Interfaces
 Moodable example

— Drawing in Java started (maybe)
* Assigned Work Reminder:

— HW #1: Pencil Me In
« Due before midnight Wednesday, July 9t, 2003

	CS193J: Programming in JavaSummer Quarter 2003Lecture 4OOP Inheritance, Abstract classes, Interfaces
	Recap
	Handouts
	Today
	“Pop-Down” rule
	super.getStress()
	Subclass Constructor
	Multiple constructors (this())
	intanceof Operator
	Grad Implementation Code
	Using Inheritance
	OOP – Abstract Superclass (Handout #10)
	Abstract Method
	Abstract Class
	Abstract Super Class
	Clever Factoring Style
	Account Example
	Account Example
	Design process
	Class Design Diagram
	Account Code walk through
	Account example: Points of note
	Java Interfaces
	Java Interfaces
	Java interfaces
	Interface Example
	Implementing an Interface
	Client Side Moodable
	Drawing (Handout #11)
	Java GUI on Screen
	OOP GUI Systems
	OOP GUI System Composition
	OOP GUI Programming Tasks
	Java AWT
	Java Swing / JFC
	Java GUI Block Diagram
	Java GUI Themes
	Introduction to Swing classes
	Content Pane / Layout Manager
	FirstFrame example
	FirstFrame Code: getting started
	FirstFrame Code: adding components
	FirstFrame example: finishing touch
	Summary

