
Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 4
OOP Inheritance, Abstract classes, Interfaces

Manu Kumar
sneaker@stanford.edu

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last time
– Java Collections

• Iterators
• ArrayList example

– OOP
• Inheritance

– Overriding
– Polymorphism
– “Pop-down” rule
– Downcasting

• Grad example
• To Dos

– HW1: Pencil Me In
• Due before midnight Wednesday July 9th, 2003

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 1 Handouts for today!
– #11: Drawing in Java

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Today

• Continue with OOP/Inheritance
– Pop-down rule
– Constructors
– instanceOf
– Grad example

• Abstract superclasses
– Account example

• Java Interfaces
– Moodable example

• Today or next time
– Start Drawing/GUI

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

“Pop-Down” rule

• The reciever knows it’s class
• The flow of control jumps around different

classes
• No matter where there code is executing the

receiver knows its class and does the
message method mapping correctly for each
message!

• Example
– Receiver is the subclass (Grad), executing a method

in the superclass(Student)
– A message send that Grad overrides will “pop-down”

to the Grad definition as in the case of getStress())

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

super.getStress()

• The “super” keyword is used in methods and
constructors to refer to code in the superclass
– Calling super.getStress() in the Grad class would

execute the code for getStress() in the Student Class
– Think of super as a directive to the message method

resolution process.
• Start searching one level higher.

• Allows the subclass to not have to rewrite the
code
– Re-use the code in the superclass and add to the

functionality

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Subclass Constructor

• Subclass needs a constructor
– Should take arguments for the superclass and the

class itself
– Needs to pass on the arguments for the superclass to

the constructor for the superclass
• Done by called using a special syntax: super(…) in the first

line of the constructor
• Note:

– If no superclass constructor is specified, the default
constructor will be called

• Every class needs its own constructors with the
arguments spelled out
– In a way constructors are not inherited and must be

spelled out

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Multiple constructors (this())

• A class can have multiple constructors with
differing parameters
– Often used to provide a default constructor which

uses default arguments
• Can re-use the code for the constructors by

using this(…)
• Example:

public Grad() {
this(10, 0);

}
public Grad(int units, int yot) {

...
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

intanceof Operator

• Special operator which may be used to check
the runtime type of a pointer

• Example
– if (x instanceof Grad) {….}

• Using instanceof with a null returns false

• Note:
– Using instanceof is generall an indication of a design

flaw
– Use sparingly, only when it is really warranted (for

example in dynamic class loading)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Grad Implementation Code

• Complete code included in handout

• Walk through of the code…

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Using Inheritance

• Most common style:
– Have a superclass with given features
– Need a class which has most of the features,

but is more contrained or slightly different
– Appropriate time to subclass and use

inheritance/overriding to reuse code.
• Working with library code

– Subclass off a library class
– Inherit 90% of the standard behavior
– Override a few key methods for the rest

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP – Abstract Superclass (Handout #10)

• OOP
– Encapsulation / Modularity
– Client Oriented Design
– Inheritance

• Polymorphism

• Abstract Superclass
– Factor common code up
– Example

• AbstractCollection class in Java libraries
• Account example that we will be doing (coming up!)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Abstract Method

• Can apply the “abstract” keyword to any
method
– public abstract void mustImplement();
– Note: no { } and no code!

• Abstract method
– Defines name and arguments
– No implementation!
– Implementation MUST be provided in the

subclass!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Abstract Class

• Can apply the “abstract” keyword to a
class
– public abstract class Account { …

• A class that has one or more abstract
methods is abstract

• Abstract classes can NOT be instantiated
– Cannot do: new Account()
– Only subclasses can be instantiated

• Used to factor out common code!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Abstract Super Class

• A common superclass for several
subclasses

• Factor up common behavior
• Define the methods all the subclasses

respond to
• Methods that subclasses should

implement are declared abstract
• Instances of the subclasses are created,

not of the superclass

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Clever Factoring Style

• Common Superclass
– Factor common behavior up to the superclass
– Superclass sends itself messages to invoke various parts of the

behavior
• Will rely on the “pop-down” behavior to work correctly!

• Special subclasses
– As short as possible
– Rely on the superclass for common behavior
– Override key methods to cusotmize behavior with minimal code

• May use super.foo()
– Rely on pop-down behavior to do the right thing!

• Example
– JComponent in the Java Swing library

• We will get into this later

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Account Example

• Problem details:
– You need to store information for bank accounts
– Assume that you only need to store the current balance, and the

total number of transactions for each account.
– The goal for the problem is to avoid duplicating code between

the three types of account.
– An account needs to respond to the following messages:

• constructor(initialBalance)
• deposit(amount)
• withdraw(amount)
• endMonth()

– Apply the end-of-month charge, print out a summary, zero the
transaction count.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Account Example

• Types of Accounts
– Normal

• Fixed $5.0 fee at the end of the month
– Nickle ‘n Dime

• $0.50 fee for each withdrawal charged at the end
of the month

– Gambler
• With probability 0.49 there is no fee
• With probability 0.51 the fee is twice the amount

withdrawn

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Design process

• Factoring
– Put common behavior in one place
– Subclasses are used to implement the

specific deviation from the common behavior
• Abstract methods

– Provide prototypes for Abstract Methods to be
implemented by subclasses

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Class Design Diagram

Account
*balance
*transactions
-deposit
-withdraw
-endMonth
-endMonthCharge (abstract)

Fee
-endMonthCharge

NickleNDime
*withdrawCount
-withdraw
-endMonthCharge

Gambler
-withdraw
-endMonthCharge

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Account Code walk through

• Complete code is included in your handout

• Code walk through…

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Account example: Points of note

• Gambler.withdraw() uses super.withdraw()
to decrement balance

• Account.endMonth() does a popdown by
sending itself the endMonthCharge()
message

• Account.main() uses polymorphism
– The right method gets called
– Pop-down to the right implementation of

withdraw depending upon the runtime type of
the receiver.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Java Interfaces

• Java does not support multiple inheritance
– This is often problematic

• What if we want an object to be multiple things?

• Interfaces
– A special type of class which

• Defines a set of method prototypes
• Does not provide the implementation for the

prototypes
• Can also define final constants

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Java Interfaces

• A Class
– Can “extend” only one class i.e. only one superclass
– Can “implement” multiple interfaces!

• Class Server implements Pingable
– Server is a class
– It implement the Pingable interface
– Server MUST provide implementations for all the

method prototypes in the Pingable interface
– The Server Object can serve as a substitute wherever

we want a Pingable Object.
• Similar to a superclass

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Java interfaces

• Lightweight
– Allow multiple classes to respond to a

common set of messages but without the
implementation complexity.

• Similar to Subclassing but…
– Good news

• Class has only one superclass
• Can implement multiple interfaces

– Bad news:
• Interface only gives the method definition and not

the implementation

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Interface Example

• Special keyword ‘interface’
• Similar to defining a class, but instead use

the keyword interface
• Methods are empty (no { and } or code)
• Example

public interface Moodable {
public Color getMood();
// interface defines getMood() prototype
// but no code

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Implementing an Interface

• “implements” keyword
– Similar to extend, but followed by a comma

separated list
• Example

public class Student implements Moodable {
public Color getMood() {

if (getStress()>100) return(Color.red);
else return(Color.green);

}
// rest of Student class stuff as before...

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Client Side Moodable

• Moodable is like an additional superclass
of Student
– It is possible to store a pointer to a Student in

a pointer of type Moodable
• Example

Student s = new Student(10);
Moodable m = s; // Moodable can point to a Student
m.getMood();// this works

• We will see more of this later…

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Drawing (Handout #11)

• You now know
– Basic Java language constructs
– OOP principles
– OOP in Java

• Next
– Drawing in Java

• Java Swing
• JComponent/Drawing
• LayoutManagers

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Java GUI on Screen

• How do you put a GUI on the screen?
– Create a window (aka Frame) object
– Install components

• Labels, buttons, etc
– System manages the window and

components by sending notification for user
events

• Drawing clicking typing
– Components draw themselves

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP GUI Systems

• OOP drawing vs. 106 drawing
– 106:

• Just start drawing when you want and the pixels
show up

• Requires re-inventing the wheel each time!
– OOP

• Build on a framework of GUI Classes
– Collection of GUI elements

• Object which correspond to visual elements
– Anthropomorphic – draw themselves

• Send messages in order to have different results
on the screen

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP GUI System Composition

• Library Class Hierarchy
– Extensive, pre-built inheritance hierarchy of classes

for common problems
• Drawing, controls, windows, scrolling

– Engineered to work together
• But that also means there is a slight learning curve

• System: Event Notifications
– Background task (”System”) manages bookeeping

and orchestration of windows and events
– “User Events” – clicking, typing etc happen in realtime
– System manages an “event queue”

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP GUI Programming Tasks

• Instantiate library classes (EASY)
– Simply requires reading the API documentation and

some understanding of their design
• Subclass library classes (HARD)

– Used to introduce custom behavior
• Inherit, override

– Requires deeper understanding of the superclass
– Relies on “pop-down” feature of OOP
– Example:

• Subclass JComponent and override painComponent() to
provide drawing code

• Subclass JButton so it beeps on being clicked

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Java AWT

• Abstract Windowing Toolkit
– Included in first release of Java
– Plagued with implementation problems
– Native peers

• Used wrapper classes for native GUI components
of the operating system

• Advantage
– Same look and feel as on the native platform

• Disadvantage
– Hard to implement reliably
– Consistency issues across platforms

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Java Swing / JFC

• Replacement/Enhancement for AWT
– aka Java Foundation Classes
– Implemented in Java

• rt.jar contains classes for Swing
• Same on all platforms

– Build on AWT primitives
– 10x more classes, depth and functionality
– Pluggable look and feel

• Interface can look like the native platform
• Dynamically switchable look and feel

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Java GUI Block Diagram

Operating System + its native GUI

Java VM

AWT

Swing

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Java GUI Themes

• We will be using Swing
– AWT still used in limited way

• Themes
– Things draw themselves when sent the right

messages
• Anthropomorphic Objects

– Layout Manager
• Used to arrange the size and position of

components on the screen
• We will see more of this soon

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Introduction to Swing classes

• JComponent
– Swing analog of the Object class
– Everything inherits from JComponent
– Defines the basic notions of geometry

• JLabel
– Built in JComponents that displays text
– Example: new JLabel(“Hello World!”);

• JFrame
– A single window
– Has a “content pane” JComponent that can hold other

components
• frame.getContentPage()

– Closing a frame simply hides it

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Content Pane / Layout Manager

• Content pane is a place holder
– An empty board where you can place

components
– Use add() to put components on the content

pane
• Content pane uses a “Layout Manager”

– Programmer provides guidelines for how the
interface should look by choosing the correct
layout manager

– LayoutManager determines the size and
positioning of components on the contentpane

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

FirstFrame example

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

FirstFrame Code: getting started

// FirstFrame.java
/*
Demonstrates bringing up a frame with some labels.

*/
import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.*;
public class FirstFrame extends JFrame {

public FirstFrame(String title) {
super(title); // superclass ctor takes frame title

// Get content pane -- contents of the window
JComponent content = (JComponent) getContentPane();

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

FirstFrame Code: adding components

// Set to use the "flow" layout
// (controls the arrangement of the components in the content)
content.setLayout(new FlowLayout());

// Background color is a property of all components --
// set it to white
content.setBackground(Color.lightGray);

// Use add() to install components
content.add(new JLabel("Hello World."));
content.add(new JLabel("Another Label."));
content.add(new JLabel("Klaatu Barada Nikto!"));
content.add(new JButton("Ok"));

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

FirstFrame example: finishing touch

// Force the frame to size/layout its components
pack();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
;
// Java 1.3 or later
setVisible(true); // make it show up on screen

}

public static void main(String[] args) {
new FirstFrame("First Frame");

}
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Summary

• Today
– Continue with OOP/Inheritance

• Pop-down rule
• Constructors
• instanceOf
• Grad example

– Abstract superclasses
• Account example

– Java Interfaces
• Moodable example

– Drawing in Java started (maybe)
• Assigned Work Reminder:

– HW #1: Pencil Me In
• Due before midnight Wednesday, July 9th, 2003

	CS193J: Programming in JavaSummer Quarter 2003Lecture 4OOP Inheritance, Abstract classes, Interfaces
	Recap
	Handouts
	Today
	“Pop-Down” rule
	super.getStress()
	Subclass Constructor
	Multiple constructors (this())
	intanceof Operator
	Grad Implementation Code
	Using Inheritance
	OOP – Abstract Superclass (Handout #10)
	Abstract Method
	Abstract Class
	Abstract Super Class
	Clever Factoring Style
	Account Example
	Account Example
	Design process
	Class Design Diagram
	Account Code walk through
	Account example: Points of note
	Java Interfaces
	Java Interfaces
	Java interfaces
	Interface Example
	Implementing an Interface
	Client Side Moodable
	Drawing (Handout #11)
	Java GUI on Screen
	OOP GUI Systems
	OOP GUI System Composition
	OOP GUI Programming Tasks
	Java AWT
	Java Swing / JFC
	Java GUI Block Diagram
	Java GUI Themes
	Introduction to Swing classes
	Content Pane / Layout Manager
	FirstFrame example
	FirstFrame Code: getting started
	FirstFrame Code: adding components
	FirstFrame example: finishing touch
	Summary

