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Java Swing, Layout Managers, Inner Classes, 
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HW#1: Pencil Me In Status!?

• Assigned Work Reminder:
– HW #1: Pencil Me In

• Due before midnight Wednesday, July 9th, 2003
• You do have three floating late days, but use wisely!

• Reminder: Use office hours!
– Questions on theory from class
– Questions or clarifications on HW requirements
– Development environment issues
– Design issues
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Random tips and pointers

• “Deprecated”
– java.util.Date has lots of methods which are 

deprecated
– Instead it references the “Calendar” class

• “Abstract”
– java.util.Calendar is abstract!
– The “concrete implementation” is actually in 

java.util.GregorianCalendar
• You do no need to do too much date arithmetic

– But you do need to figure out how to use the API
– The Java API is your friend. Use it well.
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Summary

• Last Time
– OOP/Inheritance

• Pop-down rule
• Constructors
• instanceOf
• Grad example

– Abstract superclasses
• Account example

– Java Interfaces
• Moodable example

– Drawing in Java started
• FirstFrame example

• Lots of Stuff!
– Warning/Remider: The summer quarter courses move fast!
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Handouts

• 2 Handout for today!
– #12: Inner Classes
– #13: Listeners
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Today

• Continue with Drawing in Java
• Java Swing classes

– JComponent
• Paintcomponent

– Graphics Object
– My Component Example

• Layout Managers
– Flow, Box and Border
– Nesting
– Layout Example

• Inner Classes
• Anonymous Inner Classes (maybe)
• Listener model (maybe)

– Button Listener Example
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Drawing in Java (Handout #11)

• Last time
– FirstFrame example

• Subclass JFrame
• Get content pane
• Set layout manager
• Add components

– Instantiate JLabel
– Instantiate JButton

• Pack
• Set close behavior
• Set visible
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FirstFrame example
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FirstFrame Code: getting started

// FirstFrame.java
/*
Demonstrates bringing up a frame with some labels.
*/
import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.*;
public class FirstFrame extends JFrame {

public FirstFrame(String title) {
super(title); // superclass ctor takes frame title

// Get content pane -- contents of the window
JComponent content = (JComponent) getContentPane();
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FirstFrame Code: adding components

// Set to use the "flow" layout
// (controls the arrangement of the components in the content)
content.setLayout(new FlowLayout());

// Background color is a property of all components --
// set it to white
content.setBackground(Color.lightGray);

// Use add() to install components
content.add(new JLabel("Hello World."));
content.add(new JLabel("Another Label."));
content.add(new JLabel("Klaatu Barada Nikto!"));
content.add(new JButton("Ok")); 
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FirstFrame example: finishing touch

// Force the frame to size/layout its components
pack();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
; 
// Java 1.3 or later
setVisible(true);   // make it show up on screen

}

public static void main(String[] args) {
new FirstFrame("First Frame");

}
}
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JComponent

• JComponent Basics
– Superclass of all things that can be drawn on the 

screen
– Size and position on screen 

• bounds rectangle
– Draws itself

• Anthropomorphic nature of objects
• 227 public methods

– Check out the API docs!
• Class Hierarchy

– java.awt.Component
• java.awt.Container

– javax.swing.JComponent
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Component Location/Size

• Each JComponent has its own coordinate 
system
– (0,0) is in the top left corner
– x grows to the right
– Y grows to the left

• Bounds
– Upper left corner (0,0)
– component.getWidth()
– component.getHeight()

• Local coordinate system
– Does not change as the component is moved
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Component Location/Size

• Parent container
– “parent” is the container the component is in
– Parent is itself a component

• “Location” of a component
– The position of its upper left corner in the coordinate 

system of its parent
• PreferredSize

– Used by Layout Manager to determine the size of the 
component

– setPreferredSize()
– Can also use set minimum and maximum size to be 

considered by the layout manager

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Component Location/Size

• Layout Manager
– Looks at the preferred size of all components 

and tries to do the best possible layout
– Assigns final size and location

• Use setPreferredSize before calling pack()
• Hardly ever call setsize()

• Size and Location messages
– getWidth(), getHeight(), getSize(), 

getLocation(), getBounds()
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Geometry methods

• Mostly inherited from java.awt.Component
• Constructor

– Constructs a component with initial size zero
• Methods

– int getWidth(), getHeight()
– Dimension getSize()
– int getX(), getY()
– Point getLocation()
– get/setPreferredSize()
– Rectangle getBounds()
– boolean contains(x,y), boolean contains(Point p)
– setBounds(x,y,width, height), setBounds(Rectangle)
– getParent()
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OOP GUI Drawing Theory

• Subclass JComponent
• Override paintComponent()

– Draw within the bound of the component
– Install your components in a window/container

• Remember:
– Objects are anthropomorphic (like a person)

• So we tell them how to do something (draw 
themselves)

• Then send a message asking them to do the 
action (draw itself)
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paintComponent(Graphics g)

• Notification that is sent to a JComponent when it 
should draw itself

• Override to provide custom drawing code
• Call getWidth() etc to get geometry information

– Do not hardcode!
• Do no need to erase

– Erased before paintComponent is called
• Call super.paintComponent() for more complex 

cases
– Often subclass JPanel instead
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paintComponent example

public void paintComponent(Graphics g) {
// not necessary for simple cases
// super.paintComponent(g);

int width = getWidth();
int height = getHeight();

// draw a rect around the bounds of the component
// -1 since drawRect overhangs by one
g.drawRect(0, 0, width-1, height-1);

// draw a line from upper-left, to lower-right
g.drawLine(0, 0, width-1, height-1);

}
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“Respond To” Draw Style

• Again:
– Objects are told how to draw themselves
– Send a message to the object telling it to draw

• But
– The message telling the object to draw is not sent by 

the user
– The System determines the right time

• When to redraw can be complex
• Drawing is therefore

– Passive – works well in a windowing system
– Different from C approach!

• No need to erase first
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Graphics Object

• Passed in to paintComponent
– Pointer to a drawing context
– Passed in in default state

• no state from earlier paints

• AWT Graphics
– Simple. More complex: Java2D.
– (0,0) is upper left, x extends right, y extends down
– g.drawRect(x, y, width, height)

• Extends past width and height by 1 pixel, therefore used with 
-1

– g.fillRect(x, y, width, height)
• Does not extend past!
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Graphics Object

• Methods
– drawLine(x1, y1, x2, y2)
– drawString(String, x, y)

• Use Font class to change the font of the string
– g.setColor(Color)

• Use constants in the Color class
– Component.getGraphics()

• Usually never want to call this
• Use the object that is passed to paintComponent

instead
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MyComponent Example
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MyComponent Example Code

// MyComponent.java
import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.*;

/*
Demonstrates a component that draws itself
*/
class MyComponent extends JComponent {

MyComponent(int width, int height) {
super(); // reminder that we have a super ctor
// Set the preferred size -- used by the layout mgr
setPreferredSize(new Dimension(width, height));

}
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MyComponent Example Code

/**
Draws a sort of face -- a rect at the bounds, two eyes,
and a rect mouth. Draws a string "yo" string near the bottom.

Typical paint component:
-see how big you are
-draw within your bounds
-don't need to erase first -- canvas already erased

*/
public void paintComponent(Graphics g) {

//super.paintComponent(g); // not necessary for simple cases

// Could use this to get a sense of when drawing happens
// Toolkit.getDefaultToolkit().beep();

// see how big we are
int width = getWidth();
int height = getHeight(); 
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My Component Example Code

// Draw a red rect at our bounds
g.setColor(Color.red);
g.drawRect(0, 0, width-1, height-1); // -1 for drawRect

// eyes 1/3 from top, 1/3 from each side
int eyeY = height/3;
int left = width/3;
int right = 2*width/3;
int radius = width/15;

// Draw two eyes
g.setColor(Color.yellow);
// fillOval(x, y, width, height) -- draws oval inside given rect
g.fillOval(left-radius, eyeY-radius, radius*2, radius*2);
g.fillOval(right-radius, eyeY-radius, radius*2, radius*2);
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MyComponent Example Code

// Draw a little mouth from 1/4 to 3/4
g.setColor(Color.lightGray);
// fillRect(x, y, width, height)
g.fillRect(width/4, 3*height/4, width/2, height/10);

// Draw a string at 20, 20
g.setColor(Color.black);
g.drawString("yo!", 20, 20);

}

/*
Creates a frame with a few MyComponents in it.
*/
public static void main(String[] args) {

FirstFrame.main(null);

JFrame frame = new JFrame("MyComponents");
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MyComponent Example Code

/*
Note: earlier examples subclassed off JFrame,
and set things up in its ctor. In this case,
we are just a client of JFrame, and send it
messages like getContentPane() and pack().
Both of these approaches are reasonable.
*/

// Get the content area of the frame
JComponent content = (JComponent) frame.getContentPane();
content.setBackground(Color.white);

// The Box layout makes a vertical arrangement.
// Its components grow and shrink with the window
content.setLayout(new BoxLayout(content, BoxLayout.Y_AXIS)); 
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MyComponent Example Code

// add a few components
content.add(new MyComponent(120, 80));
content.add(new MyComponent(120, 120));
content.add(new MyComponent(120, 140));

// Layout manager packs things to fit into the minimum window
frame.pack();

// frame.setSize(300, 200); // alternative to pack()

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Layout Managers

• Theory
– Similar to HTML – policy, not position

• Do not set explicit pixel sizes or positions of things
• Layout Managers know the intent (policy)
• Layout Managers apply the intent to figure out the correct size on 

the fly

• Advantages
– Platform independence

• Different platforms have different size fonts
– Resizing of windows
– Internationalization

• Adjust based on changing language

• Disadvantage
– Can sometimes be frustrating if it doesn’t do what you want!
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Visual Hierarchy

• Visual Hierarchy
– Components are placed inside other components

• Resulting “hierarchy”
– Frames/Windows usually outermost components
– Constructed at run-time

• JPanel which contains a JButton and several JLabels

• Visual Hierarchy vs. Class Hierarchy
– Class hierarchy is a compile time hiaerarchy enforced 

by the compiler
– Visual Hiwerarchy is how components are nested 

inside each other
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Visual Hierarchy example
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Visual Hierarchy Example

• JFrame
– JPanel (Smiley)

• 8 Ovals
– JPanel (ButtonPad)

• 4 JButtons
– JButton
– JButton
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FlowLayout

• Simplest
• Arranges components

– Left to right
– Top to Bottom

• Alignment options
– RIGHT
– LEFT
– CENTER
– LEADING
– TRAILING
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BoxLayout

• Aligns components in a line
– Horizontally or vertically

• Can install a box layout into a JComponent
– comp.setLayout(new BoxLayout(comp, BoxLayout.Y_AXIS)

• Or, create a “Box” Component
– Box.createVerticalBox()
– Box.createHorizontalBox()
– Box.createVerticalStruts to create spacers between 

boxes
• See API documentation!
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BoxLayout Example
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BorderLayout

• Versatile layout
– Can build very complex layouts by nesting 

BorderLayouts
• Main content in the “center”

– Resize space allocated primarily to center
• Decorate borders on either side

– North, South, East, West
• Takes second paramter to determine 

location
– border.add(comp, BorderLayout.CENTER);
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BorderLayout
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Nested JPanel

• JPanel is a simple component
– Used to aggregate other components

• Put multiple components in a JPanel using a given layout
• Can then position the JPanel within another layout as if it 

were a complex component

– To control the size of the elements in a panel we can 
use setPreferredSize

• Examples
– Group label with a control
– Set the layout of a vertical box and put lots of buttons 

in it and put it in the EAST of a BorderLayout
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Layout Example
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Layout Example
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Layout Example
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Layout Example

• Code walkthrough…
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Inner Classes (Handout #12)

• Inner Class
– A class definition inside a class
– Generally used as a private utility class which 

does not need to be seen by others classes
– Operates as a sub-part of the outer class
– It can have constructors, instance variables 

and methods, just like a regular class
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Inner Class access

• Outer and inner classes can access each other 
state!
– Even if private!
– Stylistically, acceptable as they are both from a 

common code base
• Inner class always created inside a containing 

class (outer class)
– It always has a pointer to the outer object

• (Classname.this, example: Outer.this)
– Can access instance variables automatically

• Use inner class when there is a natural need to 
access the variables of the outer class
– Otherwise use a nested class (coming up!)
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Inner Class example

public class Outer {
private int ivar;

// inner class definition
private class Inner {

void foo() {
// we can "see" our outer class automatically 
ivar = 13;

}
}

public void test() {
ivar = 10;
Inner in = new Inner();
in.foo();
...

}
}
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Nested Class

• Like an inner class
– But does not have a pointer to the outer 

object
– Does not have automatic access to the ivars

of the outer object
• Users the static keyword
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Nested Class example

public class Outer {
private int ivar;

// a class known only to Outer
private static class Nested {

void foo() {
// no automatic access to outer ivars

}
}

public void test() {
Nested nested = new Nested();
nested.foo();
...

}
}
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Inner/Nested Example

• Each inner object is created in the context of a 
single, "owning", outer object
– At runtime, the inner object has a pointer to its outer 

object which allows access to the outer object.
• Each inner object can access the ivars/methods 

of its outer object
– Can refer to the outer object using its classname as 

"Outer.this".
• The inner/outer classes can access each 

other's ivars and methods, even if they are 
"private“
– Stylistically, the inner/outer classes operate as a 

single class that is superficially divided into two.
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Inner/Nested Example Code

// Outer.java

public class Outer {
private int a;

private void increment() {
a++;

}

private class Inner extends Object {
private int b;

private Inner(int initB)  {
b = initB;

}
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Inner/Nested Example Code

private void demo() {
// access our own ivar
System.out.println("b: " + b);

// access the ivar of our outer object
System.out.println("a: " + a);

// message send can also go to the outer object
increment();

/*
Outer.this refers to the outer object, so could say
Outer.this.a or Outer.this.increment()
*/

}
}
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Inner/Nested Example Code

// Nested class is like an inner class, but
// without a pointer to the outer object.
// (uses the keyword "static")
private static class Nested {

private int c;

void demo() {
c = 11; // this works
// b = 13; // no does not compile --
// nested object does not have pointer 
// to outer object

}
}
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Inner/Nested Example Code

public void test() {
a = 10;
Inner i1 = new Inner(1);
Inner i2 = new Inner(2);

i1.demo();
i2.demo();

Nested n = new Nested();
n.demo();

}

public static void main(String[] args) {
Outer outer = new Outer();
outer.test();

}
}
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Inner/Nested Example Output

Output:

b: 1
a: 10
b: 2
a: 11
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Listeners (Handout #13)

• Anonymous Inner Classes
– An inner class created on the fly using a quick and 

dirty syntax (no name!)
– Convenient for creating small inner classes which 

play the role of callback function pointers (will see an 
example soon)

– When compiled they look like Outer$1, Outer$2
• Stylistic notes

– Useful for small sections of code
– If it requires non-trivial ivars or methods, then a true 

inner class is better
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Anonymous Inner Classes

• Do not have a name
• Does not have a constructor 

– Relies on the default constructor of the super 
class

• Does not have access to local stack 
variables (parameters to a method)
– Unless they are declared final

• Example
– Class Outer. Anonymous Inner class 

subclassed off of a class called Superclass
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Anonymous Inner Class Example
public class Outer {

int ivar;

public Superclass method() {
int sum; // ordinary stack var
sum = ivar + 1;
final int temp = ivar + 1; // stack var, but declared final (constant)
// Create new anonymous inner class, subclassed off Superclass
Superclass s = new Superclass() {

private int x = 0;
public void foo() {

x++; // x of inner class
ivar++; // ivar of outer class
bar(); // inherited from Superclass
// x = sum; // no, cannot see sum
x = temp; // this works, since temp is final

}
};
return(s); // later on, someone can send s.foo()

}
...
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final var trick

• Inner classes can see ivars of outer objects
• Inner classes cannot see stack variables 

(parameters)
• However

– Inner classes can see “final” stack variables
• Why

– Inlining of finals by the compiler
• Declare stack variables as final to communicate 

their value to an anonymous inner class
• Outer.this os the pointer to the outer object
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Controls and Listeners

• Theory
– Source

• Buttons, controls etc.
– Listener

• An Object that wants to know when the control is 
operated

– Notification Message
• A message sent from the source to the listener as 

a notification that the event has occured

• Essentially: registering callbacks
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Listeners and Interface

• An Object may be interested in multiple 
events
– It can implement multiple listener interfaces

• Once an object implements a listener 
interface, it can then be added to the 
source buy using
– source.addListener(Listener l)

• Interfaces are key in the ability to 
implement the Listener model
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Source-Listener Interaction

Source

Listener

ListeneraddListener

addListener

Notification of event
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Listener Interface

• ActionListener Interface
– Objects that would like to listen to a JButton

must implement ActionListener

public interface ActionListener extends EventListener {
/**
* Invoked when an action occurs.
*/
public void actionPerformed(ActionEvent e);

}
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Notification Prototype

• The message prototype defined in the 
ActionListener Interface
– The message the button sends

• ActionEvent parameter includes extra info
– A pointer to the source object (e.getSource())
– When the event happened
– Any modifier keys held down

public void actionPerformed(ActionEvent e);
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source.addXXX(listener)

• To setup the listener relationship, the 
listener must register with the source
– Example: button.addActionListener(listener)

• The listener must implement the 
ActionListener interface
– It must respond to the message that the 

button will send
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Event Notification

• When the action happens
– Button is clicked…

• The source iterates through its listeners
• Sends each listener the notification

– JButton send the actionPerformed() message 
to each listener
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Using a Button and a Listener #1

• Component implements ActionListener
– The component could implement the ActionListener

interface directly
– Register “this” as the listener object

class MyComponent extends JComponent
implements ActionListener {
...
// in the JComponent ctor
button.addActionListener(this);
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Using a Button and a Listener #2

• Create an inner class
– Create a MyListener inner class which 

implements ActionListener
– Create a new MyListener object
– Add it via button.addXXX(listener)

// in the JComponent ctor
ActionListener listener = new MyActionListener();
button.addActionListener(listener);
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Anonymous Inner class

• Most common method!
• Create an Anonymous Inner Class that implements the 

interface
– Can be created on the fly inside the method!

button = new JButton("Beep");
panel.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

}
);
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Button Listener Example
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ButtonListener Example Code

// ListenerFrame.java
import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;
/*
Demonstrates bringing up a frame with a couple of buttons in it.
Demonstrates using anonymous inner class listener.
*/
public class ListenerFrame extends JFrame {

private JLabel label;
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Button Listener Example

public ListenerFrame() {
super("ListenerFrame");

JComponent content = (JComponent) getContentPane();
content.setLayout(new FlowLayout());

JButton button = new JButton("Beep!");
content.add(button);

// ----
// Creating an action listener in 2 steps...

// 1. Create an inner class subclass of ActionListener
ActionListener listener = 

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

};
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Button Listener Example

// 2. Add the listener to the button
button.addActionListener(listener);

// ----
// Creating a listener in 1 step...

// Create a little panel to hold a button
// and a label
JPanel panel = new JPanel();
content.add(panel);
JButton button2 = new JButton("Yay!");
label = new JLabel("Woo Hoo");
panel.add(button2);
panel.add(label);



13

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

// This listener adds a "!" to the label.
button2.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

String text = label.getText();
label.setText(text + "!");
// note: we have access to "label" of 

outer class
// we do not have access to local vars

like 'panel',
// unless they are declared final.

}
}

);

pack();
setVisible(true);

}
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Misc Listeners

• JCheckBox
– Uses ActionListener, like JButton
– Responds to boolean isSelected() to see if it is 

currently checked
• JSlider

– Component with min/max/current values
– Users StateChangedListener interface

• Notification is stateChanged(ChangeEvent e)
• e.getSource() to get a pointer to the source

– Responds to int getValue() to get current value
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Event handling Strategies

• Listener strategy
– Our approach so far
– Event based

• Polling strategy
– Do not listen to the control
– Check the value when you choose
– Often fraught with problems, but may have an 

appropriate use in some cases
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Summary

• Continued with Drawing in Java
• Java Swing classes

– JComponent
• paintComponent

– Graphics Object
– My Component Example

• Layout Managers
– Flow, Box and Border
– Nesting
– Layout Example

• Inner Classes
• Anonymous Inner Classes (maybe)
• Listener model (maybe)

– Button Listener Example
• Assigned Work Reminder:

– HW #1: Pencil Me In
• Due before midnight Wednesday, July 9th, 2003
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