
1

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 5
Java Swing, Layout Managers, Inner Classes,

Listeners

Manu Kumar
sneaker@stanford.edu

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

HW#1: Pencil Me In Status!?

• Assigned Work Reminder:
– HW #1: Pencil Me In

• Due before midnight Wednesday, July 9th, 2003
• You do have three floating late days, but use wisely!

• Reminder: Use office hours!
– Questions on theory from class
– Questions or clarifications on HW requirements
– Development environment issues
– Design issues

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Random tips and pointers

• “Deprecated”
– java.util.Date has lots of methods which are

deprecated
– Instead it references the “Calendar” class

• “Abstract”
– java.util.Calendar is abstract!
– The “concrete implementation” is actually in

java.util.GregorianCalendar
• You do no need to do too much date arithmetic

– But you do need to figure out how to use the API
– The Java API is your friend. Use it well.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Summary

• Last Time
– OOP/Inheritance

• Pop-down rule
• Constructors
• instanceOf
• Grad example

– Abstract superclasses
• Account example

– Java Interfaces
• Moodable example

– Drawing in Java started
• FirstFrame example

• Lots of Stuff!
– Warning/Remider: The summer quarter courses move fast!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 2 Handout for today!
– #12: Inner Classes
– #13: Listeners

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Today

• Continue with Drawing in Java
• Java Swing classes

– JComponent
• Paintcomponent

– Graphics Object
– My Component Example

• Layout Managers
– Flow, Box and Border
– Nesting
– Layout Example

• Inner Classes
• Anonymous Inner Classes (maybe)
• Listener model (maybe)

– Button Listener Example

2

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Drawing in Java (Handout #11)

• Last time
– FirstFrame example

• Subclass JFrame
• Get content pane
• Set layout manager
• Add components

– Instantiate JLabel
– Instantiate JButton

• Pack
• Set close behavior
• Set visible

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

FirstFrame example

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

FirstFrame Code: getting started

// FirstFrame.java
/*
Demonstrates bringing up a frame with some labels.
*/
import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.*;
public class FirstFrame extends JFrame {

public FirstFrame(String title) {
super(title); // superclass ctor takes frame title

// Get content pane -- contents of the window
JComponent content = (JComponent) getContentPane();

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

FirstFrame Code: adding components

// Set to use the "flow" layout
// (controls the arrangement of the components in the content)
content.setLayout(new FlowLayout());

// Background color is a property of all components --
// set it to white
content.setBackground(Color.lightGray);

// Use add() to install components
content.add(new JLabel("Hello World."));
content.add(new JLabel("Another Label."));
content.add(new JLabel("Klaatu Barada Nikto!"));
content.add(new JButton("Ok"));

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

FirstFrame example: finishing touch

// Force the frame to size/layout its components
pack();

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
;
// Java 1.3 or later
setVisible(true); // make it show up on screen

}

public static void main(String[] args) {
new FirstFrame("First Frame");

}
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

JComponent

• JComponent Basics
– Superclass of all things that can be drawn on the

screen
– Size and position on screen

• bounds rectangle
– Draws itself

• Anthropomorphic nature of objects
• 227 public methods

– Check out the API docs!
• Class Hierarchy

– java.awt.Component
• java.awt.Container

– javax.swing.JComponent

3

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Component Location/Size

• Each JComponent has its own coordinate
system
– (0,0) is in the top left corner
– x grows to the right
– Y grows to the left

• Bounds
– Upper left corner (0,0)
– component.getWidth()
– component.getHeight()

• Local coordinate system
– Does not change as the component is moved

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Component Location/Size

• Parent container
– “parent” is the container the component is in
– Parent is itself a component

• “Location” of a component
– The position of its upper left corner in the coordinate

system of its parent
• PreferredSize

– Used by Layout Manager to determine the size of the
component

– setPreferredSize()
– Can also use set minimum and maximum size to be

considered by the layout manager

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Component Location/Size

• Layout Manager
– Looks at the preferred size of all components

and tries to do the best possible layout
– Assigns final size and location

• Use setPreferredSize before calling pack()
• Hardly ever call setsize()

• Size and Location messages
– getWidth(), getHeight(), getSize(),

getLocation(), getBounds()

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Geometry methods

• Mostly inherited from java.awt.Component
• Constructor

– Constructs a component with initial size zero
• Methods

– int getWidth(), getHeight()
– Dimension getSize()
– int getX(), getY()
– Point getLocation()
– get/setPreferredSize()
– Rectangle getBounds()
– boolean contains(x,y), boolean contains(Point p)
– setBounds(x,y,width, height), setBounds(Rectangle)
– getParent()

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

OOP GUI Drawing Theory

• Subclass JComponent
• Override paintComponent()

– Draw within the bound of the component
– Install your components in a window/container

• Remember:
– Objects are anthropomorphic (like a person)

• So we tell them how to do something (draw
themselves)

• Then send a message asking them to do the
action (draw itself)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

paintComponent(Graphics g)

• Notification that is sent to a JComponent when it
should draw itself

• Override to provide custom drawing code
• Call getWidth() etc to get geometry information

– Do not hardcode!
• Do no need to erase

– Erased before paintComponent is called
• Call super.paintComponent() for more complex

cases
– Often subclass JPanel instead

4

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

paintComponent example

public void paintComponent(Graphics g) {
// not necessary for simple cases
// super.paintComponent(g);

int width = getWidth();
int height = getHeight();

// draw a rect around the bounds of the component
// -1 since drawRect overhangs by one
g.drawRect(0, 0, width-1, height-1);

// draw a line from upper-left, to lower-right
g.drawLine(0, 0, width-1, height-1);

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

“Respond To” Draw Style

• Again:
– Objects are told how to draw themselves
– Send a message to the object telling it to draw

• But
– The message telling the object to draw is not sent by

the user
– The System determines the right time

• When to redraw can be complex
• Drawing is therefore

– Passive – works well in a windowing system
– Different from C approach!

• No need to erase first

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Graphics Object

• Passed in to paintComponent
– Pointer to a drawing context
– Passed in in default state

• no state from earlier paints

• AWT Graphics
– Simple. More complex: Java2D.
– (0,0) is upper left, x extends right, y extends down
– g.drawRect(x, y, width, height)

• Extends past width and height by 1 pixel, therefore used with
-1

– g.fillRect(x, y, width, height)
• Does not extend past!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Graphics Object

• Methods
– drawLine(x1, y1, x2, y2)
– drawString(String, x, y)

• Use Font class to change the font of the string
– g.setColor(Color)

• Use constants in the Color class
– Component.getGraphics()

• Usually never want to call this
• Use the object that is passed to paintComponent

instead

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

MyComponent Example

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

MyComponent Example Code

// MyComponent.java
import java.awt.*;
import javax.swing.*;
import java.util.*;
import java.awt.event.*;

/*
Demonstrates a component that draws itself
*/
class MyComponent extends JComponent {

MyComponent(int width, int height) {
super(); // reminder that we have a super ctor
// Set the preferred size -- used by the layout mgr
setPreferredSize(new Dimension(width, height));

}

5

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

MyComponent Example Code

/**
Draws a sort of face -- a rect at the bounds, two eyes,
and a rect mouth. Draws a string "yo" string near the bottom.

Typical paint component:
-see how big you are
-draw within your bounds
-don't need to erase first -- canvas already erased

*/
public void paintComponent(Graphics g) {

//super.paintComponent(g); // not necessary for simple cases

// Could use this to get a sense of when drawing happens
// Toolkit.getDefaultToolkit().beep();

// see how big we are
int width = getWidth();
int height = getHeight();

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

My Component Example Code

// Draw a red rect at our bounds
g.setColor(Color.red);
g.drawRect(0, 0, width-1, height-1); // -1 for drawRect

// eyes 1/3 from top, 1/3 from each side
int eyeY = height/3;
int left = width/3;
int right = 2*width/3;
int radius = width/15;

// Draw two eyes
g.setColor(Color.yellow);
// fillOval(x, y, width, height) -- draws oval inside given rect
g.fillOval(left-radius, eyeY-radius, radius*2, radius*2);
g.fillOval(right-radius, eyeY-radius, radius*2, radius*2);

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

MyComponent Example Code

// Draw a little mouth from 1/4 to 3/4
g.setColor(Color.lightGray);
// fillRect(x, y, width, height)
g.fillRect(width/4, 3*height/4, width/2, height/10);

// Draw a string at 20, 20
g.setColor(Color.black);
g.drawString("yo!", 20, 20);

}

/*
Creates a frame with a few MyComponents in it.
*/
public static void main(String[] args) {

FirstFrame.main(null);

JFrame frame = new JFrame("MyComponents");

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

MyComponent Example Code

/*
Note: earlier examples subclassed off JFrame,
and set things up in its ctor. In this case,
we are just a client of JFrame, and send it
messages like getContentPane() and pack().
Both of these approaches are reasonable.
*/

// Get the content area of the frame
JComponent content = (JComponent) frame.getContentPane();
content.setBackground(Color.white);

// The Box layout makes a vertical arrangement.
// Its components grow and shrink with the window
content.setLayout(new BoxLayout(content, BoxLayout.Y_AXIS));

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

MyComponent Example Code

// add a few components
content.add(new MyComponent(120, 80));
content.add(new MyComponent(120, 120));
content.add(new MyComponent(120, 140));

// Layout manager packs things to fit into the minimum window
frame.pack();

// frame.setSize(300, 200); // alternative to pack()

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setVisible(true);

}
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Layout Managers

• Theory
– Similar to HTML – policy, not position

• Do not set explicit pixel sizes or positions of things
• Layout Managers know the intent (policy)
• Layout Managers apply the intent to figure out the correct size on

the fly

• Advantages
– Platform independence

• Different platforms have different size fonts
– Resizing of windows
– Internationalization

• Adjust based on changing language

• Disadvantage
– Can sometimes be frustrating if it doesn’t do what you want!

6

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Visual Hierarchy

• Visual Hierarchy
– Components are placed inside other components

• Resulting “hierarchy”
– Frames/Windows usually outermost components
– Constructed at run-time

• JPanel which contains a JButton and several JLabels

• Visual Hierarchy vs. Class Hierarchy
– Class hierarchy is a compile time hiaerarchy enforced

by the compiler
– Visual Hiwerarchy is how components are nested

inside each other

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Visual Hierarchy example

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Visual Hierarchy Example

• JFrame
– JPanel (Smiley)

• 8 Ovals
– JPanel (ButtonPad)

• 4 JButtons
– JButton
– JButton

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

FlowLayout

• Simplest
• Arranges components

– Left to right
– Top to Bottom

• Alignment options
– RIGHT
– LEFT
– CENTER
– LEADING
– TRAILING

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

BoxLayout

• Aligns components in a line
– Horizontally or vertically

• Can install a box layout into a JComponent
– comp.setLayout(new BoxLayout(comp, BoxLayout.Y_AXIS)

• Or, create a “Box” Component
– Box.createVerticalBox()
– Box.createHorizontalBox()
– Box.createVerticalStruts to create spacers between

boxes
• See API documentation!

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

BoxLayout Example

7

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

BorderLayout

• Versatile layout
– Can build very complex layouts by nesting

BorderLayouts
• Main content in the “center”

– Resize space allocated primarily to center
• Decorate borders on either side

– North, South, East, West
• Takes second paramter to determine

location
– border.add(comp, BorderLayout.CENTER);

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

BorderLayout

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Nested JPanel

• JPanel is a simple component
– Used to aggregate other components

• Put multiple components in a JPanel using a given layout
• Can then position the JPanel within another layout as if it

were a complex component

– To control the size of the elements in a panel we can
use setPreferredSize

• Examples
– Group label with a control
– Set the layout of a vertical box and put lots of buttons

in it and put it in the EAST of a BorderLayout

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Layout Example

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Layout Example

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Layout Example

8

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Layout Example

• Code walkthrough…

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inner Classes (Handout #12)

• Inner Class
– A class definition inside a class
– Generally used as a private utility class which

does not need to be seen by others classes
– Operates as a sub-part of the outer class
– It can have constructors, instance variables

and methods, just like a regular class

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inner Class access

• Outer and inner classes can access each other
state!
– Even if private!
– Stylistically, acceptable as they are both from a

common code base
• Inner class always created inside a containing

class (outer class)
– It always has a pointer to the outer object

• (Classname.this, example: Outer.this)
– Can access instance variables automatically

• Use inner class when there is a natural need to
access the variables of the outer class
– Otherwise use a nested class (coming up!)

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inner Class example

public class Outer {
private int ivar;

// inner class definition
private class Inner {

void foo() {
// we can "see" our outer class automatically
ivar = 13;

}
}

public void test() {
ivar = 10;
Inner in = new Inner();
in.foo();
...

}
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Nested Class

• Like an inner class
– But does not have a pointer to the outer

object
– Does not have automatic access to the ivars

of the outer object
• Users the static keyword

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Nested Class example

public class Outer {
private int ivar;

// a class known only to Outer
private static class Nested {

void foo() {
// no automatic access to outer ivars

}
}

public void test() {
Nested nested = new Nested();
nested.foo();
...

}
}

9

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example

• Each inner object is created in the context of a
single, "owning", outer object
– At runtime, the inner object has a pointer to its outer

object which allows access to the outer object.
• Each inner object can access the ivars/methods

of its outer object
– Can refer to the outer object using its classname as

"Outer.this".
• The inner/outer classes can access each

other's ivars and methods, even if they are
"private“
– Stylistically, the inner/outer classes operate as a

single class that is superficially divided into two.

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Code

// Outer.java

public class Outer {
private int a;

private void increment() {
a++;

}

private class Inner extends Object {
private int b;

private Inner(int initB) {
b = initB;

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Code

private void demo() {
// access our own ivar
System.out.println("b: " + b);

// access the ivar of our outer object
System.out.println("a: " + a);

// message send can also go to the outer object
increment();

/*
Outer.this refers to the outer object, so could say
Outer.this.a or Outer.this.increment()
*/

}
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Code

// Nested class is like an inner class, but
// without a pointer to the outer object.
// (uses the keyword "static")
private static class Nested {

private int c;

void demo() {
c = 11; // this works
// b = 13; // no does not compile --
// nested object does not have pointer
// to outer object

}
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Code

public void test() {
a = 10;
Inner i1 = new Inner(1);
Inner i2 = new Inner(2);

i1.demo();
i2.demo();

Nested n = new Nested();
n.demo();

}

public static void main(String[] args) {
Outer outer = new Outer();
outer.test();

}
}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Output

Output:

b: 1
a: 10
b: 2
a: 11

10

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Listeners (Handout #13)

• Anonymous Inner Classes
– An inner class created on the fly using a quick and

dirty syntax (no name!)
– Convenient for creating small inner classes which

play the role of callback function pointers (will see an
example soon)

– When compiled they look like Outer$1, Outer$2
• Stylistic notes

– Useful for small sections of code
– If it requires non-trivial ivars or methods, then a true

inner class is better

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Anonymous Inner Classes

• Do not have a name
• Does not have a constructor

– Relies on the default constructor of the super
class

• Does not have access to local stack
variables (parameters to a method)
– Unless they are declared final

• Example
– Class Outer. Anonymous Inner class

subclassed off of a class called Superclass

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Anonymous Inner Class Example
public class Outer {

int ivar;

public Superclass method() {
int sum; // ordinary stack var
sum = ivar + 1;
final int temp = ivar + 1; // stack var, but declared final (constant)
// Create new anonymous inner class, subclassed off Superclass
Superclass s = new Superclass() {

private int x = 0;
public void foo() {

x++; // x of inner class
ivar++; // ivar of outer class
bar(); // inherited from Superclass
// x = sum; // no, cannot see sum
x = temp; // this works, since temp is final

}
};
return(s); // later on, someone can send s.foo()

}
...

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

final var trick

• Inner classes can see ivars of outer objects
• Inner classes cannot see stack variables

(parameters)
• However

– Inner classes can see “final” stack variables
• Why

– Inlining of finals by the compiler
• Declare stack variables as final to communicate

their value to an anonymous inner class
• Outer.this os the pointer to the outer object

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Controls and Listeners

• Theory
– Source

• Buttons, controls etc.
– Listener

• An Object that wants to know when the control is
operated

– Notification Message
• A message sent from the source to the listener as

a notification that the event has occured

• Essentially: registering callbacks

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Listeners and Interface

• An Object may be interested in multiple
events
– It can implement multiple listener interfaces

• Once an object implements a listener
interface, it can then be added to the
source buy using
– source.addListener(Listener l)

• Interfaces are key in the ability to
implement the Listener model

11

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Source-Listener Interaction

Source

Listener

ListeneraddListener

addListener

Notification of event

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Listener Interface

• ActionListener Interface
– Objects that would like to listen to a JButton

must implement ActionListener

public interface ActionListener extends EventListener {
/**
* Invoked when an action occurs.
*/
public void actionPerformed(ActionEvent e);

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Notification Prototype

• The message prototype defined in the
ActionListener Interface
– The message the button sends

• ActionEvent parameter includes extra info
– A pointer to the source object (e.getSource())
– When the event happened
– Any modifier keys held down

public void actionPerformed(ActionEvent e);
Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

source.addXXX(listener)

• To setup the listener relationship, the
listener must register with the source
– Example: button.addActionListener(listener)

• The listener must implement the
ActionListener interface
– It must respond to the message that the

button will send

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Event Notification

• When the action happens
– Button is clicked…

• The source iterates through its listeners
• Sends each listener the notification

– JButton send the actionPerformed() message
to each listener

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Using a Button and a Listener #1

• Component implements ActionListener
– The component could implement the ActionListener

interface directly
– Register “this” as the listener object

class MyComponent extends JComponent
implements ActionListener {
...
// in the JComponent ctor
button.addActionListener(this);

12

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Using a Button and a Listener #2

• Create an inner class
– Create a MyListener inner class which

implements ActionListener
– Create a new MyListener object
– Add it via button.addXXX(listener)

// in the JComponent ctor
ActionListener listener = new MyActionListener();
button.addActionListener(listener);

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Anonymous Inner class

• Most common method!
• Create an Anonymous Inner Class that implements the

interface
– Can be created on the fly inside the method!

button = new JButton("Beep");
panel.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

}
);

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

ButtonListener Example Code

// ListenerFrame.java
import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;
/*
Demonstrates bringing up a frame with a couple of buttons in it.
Demonstrates using anonymous inner class listener.
*/
public class ListenerFrame extends JFrame {

private JLabel label;

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

public ListenerFrame() {
super("ListenerFrame");

JComponent content = (JComponent) getContentPane();
content.setLayout(new FlowLayout());

JButton button = new JButton("Beep!");
content.add(button);

// ----
// Creating an action listener in 2 steps...

// 1. Create an inner class subclass of ActionListener
ActionListener listener =

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

};

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

// 2. Add the listener to the button
button.addActionListener(listener);

// ----
// Creating a listener in 1 step...

// Create a little panel to hold a button
// and a label
JPanel panel = new JPanel();
content.add(panel);
JButton button2 = new JButton("Yay!");
label = new JLabel("Woo Hoo");
panel.add(button2);
panel.add(label);

13

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

// This listener adds a "!" to the label.
button2.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

String text = label.getText();
label.setText(text + "!");
// note: we have access to "label" of

outer class
// we do not have access to local vars

like 'panel',
// unless they are declared final.

}
}

);

pack();
setVisible(true);

}

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Misc Listeners

• JCheckBox
– Uses ActionListener, like JButton
– Responds to boolean isSelected() to see if it is

currently checked
• JSlider

– Component with min/max/current values
– Users StateChangedListener interface

• Notification is stateChanged(ChangeEvent e)
• e.getSource() to get a pointer to the source

– Responds to int getValue() to get current value

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Event handling Strategies

• Listener strategy
– Our approach so far
– Event based

• Polling strategy
– Do not listen to the control
– Check the value when you choose
– Often fraught with problems, but may have an

appropriate use in some cases

Thursday, June 26th, 2003 Copyright © 2003, Manu Kumar

Summary

• Continued with Drawing in Java
• Java Swing classes

– JComponent
• paintComponent

– Graphics Object
– My Component Example

• Layout Managers
– Flow, Box and Border
– Nesting
– Layout Example

• Inner Classes
• Anonymous Inner Classes (maybe)
• Listener model (maybe)

– Button Listener Example
• Assigned Work Reminder:

– HW #1: Pencil Me In
• Due before midnight Wednesday, July 9th, 2003

	CS193J: Programming in JavaSummer Quarter 2003Lecture 5Java Swing, Layout Managers, Inner Classes, Listeners
	HW#1: Pencil Me In Status!?
	Random tips and pointers
	Summary
	Handouts
	Today
	Drawing in Java (Handout #11)
	FirstFrame example
	FirstFrame Code: getting started
	FirstFrame Code: adding components
	FirstFrame example: finishing touch
	JComponent
	Component Location/Size
	Component Location/Size
	Component Location/Size
	Geometry methods
	OOP GUI Drawing Theory
	paintComponent(Graphics g)
	paintComponent example
	“Respond To” Draw Style
	Graphics Object
	Graphics Object
	MyComponent Example
	MyComponent Example Code
	MyComponent Example Code
	My Component Example Code
	MyComponent Example Code
	MyComponent Example Code
	MyComponent Example Code
	Layout Managers
	Visual Hierarchy
	Visual Hierarchy example
	Visual Hierarchy Example
	FlowLayout
	BoxLayout
	BoxLayout Example
	BorderLayout
	BorderLayout
	Nested JPanel
	Layout Example
	Layout Example
	Layout Example
	Layout Example
	Inner Classes (Handout #12)
	Inner Class access
	Inner Class example
	Nested Class
	Nested Class example
	Inner/Nested Example
	Inner/Nested Example Code
	Inner/Nested Example Code
	Inner/Nested Example Code
	Inner/Nested Example Code
	Inner/Nested Example Output
	Listeners (Handout #13)
	Anonymous Inner Classes
	Anonymous Inner Class Example
	final var trick
	Controls and Listeners
	Listeners and Interface
	Source-Listener Interaction
	Listener Interface
	Notification Prototype
	source.addXXX(listener)
	Event?Notification
	Using a Button and a Listener #1
	Using a Button and a Listener #2
	Anonymous Inner class
	Button Listener Example
	ButtonListener Example Code
	Button Listener Example
	Button Listener Example
	Button Listener Example
	Misc Listeners
	Event handling Strategies
	Summary

