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CS193J: Programming in Java
Summer Quarter 2003

Lecture 6
Inner Classes, Listeners, Repaint

Manu Kumar
sneaker@stanford.edu
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HW#1: Pencil Me In Status!?

• How was Homework #1?
– Comments please?
– SITN students feel free to email comments to 

sneaker@stanford.edu

• Reminder:
– Still have late days!

• Don’t panic if you haven’t finished yet
• Plan accordingly for future assignments
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Handouts

• 3 Handout for today!
– #14: HW 2: JavaDraw

• Due before midnight Wednesday July 23rd, 2003
– #15: Repaint
– #16: Mouse
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Homework #2: Java Draw Demo

• Live demo of the solution to HW#2

• Tips
– Make sure to read the handout several times
– Design first, code later

• Spend time in designing your classes on paper
• Use diagrams, sketches

– You can never write all the code for all the 
functionality without incrementally compiling and 
testing!!

• We give you working code!
• Add functionality – Compile – Test – Repeat
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Lecture-Homework mapping

• HW #2 will use
– OOP concepts

• Inheritance, overriding, polymorphism
• Abstract classes

– Drawing in Java
• Layouts
• paintComponent()

– Event handling (Today)
• Anonymous Inner classes

– Repaint (Today)
– Mouse Tracking (Today/Thursday) 
– Advanced Drawing (Thursday)
– Object Serialization (Thursday)
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Recap

• Last Time
– Continued with Drawing in Java
– Java Swing classes

• JComponent
• Graphics Object
• MyComponent Example

– Layout Managers
• Flow, Box and Border
• Nesting layouts
• Layout Example

– Inner Classes
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Today

• Inner Classes
– Review
– Inner/Nested Class Example

• Anonymous Inner Classes
• Listener model

– Button Listener Example
• Repaint
• Mouse Tracking
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Inner Classes (Handout #12)

• Inner Class
– A class definition inside a class
– Generally used as a private utility class which 

does not need to be seen by others classes
– Operates as a sub-part of the outer class
– It can have constructors, instance variables 

and methods, just like a regular class
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Inner Class access

• Outer and inner classes can access each other 
state!
– Even if private!
– Stylistically, acceptable as they are both from a 

common code base
• Inner class always created inside a containing 

class (outer class)
– It always has a pointer to the outer object

• (Classname.this, example: Outer.this)
– Can access instance variables automatically

• Use inner class when there is a natural need to 
access the variables of the outer class
– Otherwise use a nested class (coming up!)
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Inner Class example

public class Outer {
private int ivar;

// inner class definition
private class Inner {

void foo() {
// we can "see" our outer class automatically 
ivar = 13;

}
}

public void test() {
ivar = 10;
Inner in = new Inner();
in.foo();
...

}
}
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Nested Class

• Like an inner class
– But does not have a pointer to the outer 

object
– Does not have automatic access to the ivars

of the outer object
• Users the static keyword
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Nested Class example

public class Outer {
private int ivar;

// a class known only to Outer
private static class Nested {

void foo() {
// no automatic access to outer ivars

}
}

public void test() {
Nested nested = new Nested();
nested.foo();
...

}
}
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Inner/Nested Example

• Each inner object is created in the context of a 
single, "owning", outer object
– At runtime, the inner object has a pointer to its outer 

object which allows access to the outer object.
• Each inner object can access the ivars/methods 

of its outer object
– Can refer to the outer object using its classname as 

"Outer.this".
• The inner/outer classes can access each 

other's ivars and methods, even if they are 
"private“
– Stylistically, the inner/outer classes operate as a 

single class that is superficially divided into two.

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Code

// Outer.java

public class Outer {
private int a;

private void increment() {
a++;

}

private class Inner extends Object {
private int b;

private Inner(int initB)  {
b = initB;

}
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Inner/Nested Example Code

private void demo() {
// access our own ivar
System.out.println("b: " + b);

// access the ivar of our outer object
System.out.println("a: " + a);

// message send can also go to the outer object
increment();

/*
Outer.this refers to the outer object, so could say
Outer.this.a or Outer.this.increment()
*/

}
}
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Inner/Nested Example Code

// Nested class is like an inner class, but
// without a pointer to the outer object.
// (uses the keyword "static")
private static class Nested {

private int c;

void demo() {
c = 11; // this works
// b = 13; // no does not compile --
// nested object does not have pointer 
// to outer object

}
}
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Inner/Nested Example Code

public void test() {
a = 10;
Inner i1 = new Inner(1);
Inner i2 = new Inner(2);

i1.demo();
i2.demo();

Nested n = new Nested();
n.demo();

}

public static void main(String[] args) {
Outer outer = new Outer();
outer.test();

}
}
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Inner/Nested Example Output

Output:

b: 1
a: 10
b: 2
a: 11



4

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Listeners (Handout #13)

• Anonymous Inner Classes
– An inner class created on the fly using a quick and 

dirty syntax (no name!)
– Convenient for creating small inner classes which 

play the role of callback function pointers (will see an 
example soon)

– When compiled they look like Outer$1, Outer$2
• Stylistic notes

– Useful for small sections of code
– If it requires non-trivial ivars or methods, then a true 

inner class is better
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Anonymous Inner Classes

• Do not have a name
• Does not have a constructor 

– Relies on the default constructor of the super 
class

• Does not have access to local stack 
variables (parameters to a method)
– Unless they are declared final

• Example
– Class Outer. Anonymous Inner class 

subclassed off of a class called Superclass
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Anonymous Inner Class Example
public class Outer {

int ivar;

public Superclass method() {
int sum; // ordinary stack var
sum = ivar + 1;
final int temp = ivar + 1; // stack var, but declared final (constant)
// Create new anonymous inner class, subclassed off Superclass
Superclass s = new Superclass() {

private int x = 0;
public void foo() {

x++; // x of inner class
ivar++; // ivar of outer class
bar(); // inherited from Superclass
// x = sum; // no, cannot see sum
x = temp; // this works, since temp is final

}
};
return(s); // later on, someone can send s.foo()

}
...
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final var trick

• Inner classes can see ivars of outer objects
• Inner classes cannot see stack variables 

(parameters)
• However

– Inner classes can see “final” stack variables
• Why

– Inlining of finals by the compiler
• Declare stack variables as final to communicate 

their value to an anonymous inner class
• Outer.this os the pointer to the outer object
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Controls and Listeners

• Theory
– Source

• Buttons, controls etc.
– Listener

• An Object that wants to know when the control is 
operated

– Notification Message
• A message sent from the source to the listener as 

a notification that the event has occured

• Essentially: registering callbacks
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Listeners and Interface

• An Object may be interested in multiple 
events
– It can implement multiple listener interfaces

• Once an object implements a listener 
interface, it can then be added to the 
source buy using
– source.addListener(Listener l)

• Interfaces are key in the ability to 
implement the Listener model
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Source-Listener Interaction

Source

Listener

ListeneraddListener

addListener

Notification of event
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Listener Interface

• ActionListener Interface
– Objects that would like to listen to a JButton

must implement ActionListener

public interface ActionListener extends EventListener {
/**
* Invoked when an action occurs.
*/
public void actionPerformed(ActionEvent e);

}
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Notification Prototype

• The message prototype defined in the 
ActionListener Interface
– The message the button sends

• ActionEvent parameter includes extra info
– A pointer to the source object (e.getSource())
– When the event happened
– Any modifier keys held down

public void actionPerformed(ActionEvent e);
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source.addXXX(listener)

• To setup the listener relationship, the 
listener must register with the source
– Example: button.addActionListener(listener)

• The listener must implement the 
ActionListener interface
– It must respond to the message that the 

button will send
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Event Notification

• When the action happens
– Button is clicked…

• The source iterates through its listeners
• Sends each listener the notification

– JButton send the actionPerformed() message 
to each listener
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Using a Button and a Listener #1

• Component implements ActionListener
– The component could implement the ActionListener

interface directly
– Register “this” as the listener object

class MyComponent extends JComponent
implements ActionListener {
...
// in the JComponent ctor
button.addActionListener(this);
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Using a Button and a Listener #2

• Create an inner class
– Create a MyListener inner class which 

implements ActionListener
– Create a new MyListener object
– Add it via button.addXXX(listener)

// in the JComponent ctor
ActionListener listener = new MyActionListener();
button.addActionListener(listener);
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Using a Button and a Listener #3

• Anonymous Inner class
– Most common method!
– Create an Anonymous Inner Class that implements the interface

• Can be created on the fly inside the method!

button = new JButton("Beep");
panel.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

}
);
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Button Listener Example
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ButtonListener Example Code

// ListenerFrame.java
import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;
/*
Demonstrates bringing up a frame with a couple of buttons in it.
Demonstrates using anonymous inner class listener.
*/
public class ListenerFrame extends JFrame {

private JLabel label;
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Button Listener Example

public ListenerFrame() {
super("ListenerFrame");

JComponent content = (JComponent) getContentPane();
content.setLayout(new FlowLayout());

JButton button = new JButton("Beep!");
content.add(button);

// ----
// Creating an action listener in 2 steps...

// 1. Create an inner class subclass of ActionListener
ActionListener listener = 

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

};
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Button Listener Example

// 2. Add the listener to the button
button.addActionListener(listener);

// ----
// Creating a listener in 1 step...

// Create a little panel to hold a button
// and a label
JPanel panel = new JPanel();
content.add(panel);
JButton button2 = new JButton("Yay!");
label = new JLabel("Woo Hoo");
panel.add(button2);
panel.add(label);
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Button Listener Example

// This listener adds a "!" to the label.
button2.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

String text = label.getText();
label.setText(text + "!");
// note: we have access to "label" of 

outer class
// we do not have access to local vars

like 'panel',
// unless they are declared final.

}
}

);

pack();
setVisible(true);

}
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Misc Listeners

• JCheckBox
– Uses ActionListener, like JButton
– Responds to boolean isSelected() to see if it is 

currently checked
• JSlider

– Component with min/max/current values
– Users StateChangedListener interface

• Notification is stateChanged(ChangeEvent e)
• e.getSource() to get a pointer to the source

– Responds to int getValue() to get current value
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Event handling Strategies

• Listener strategy
– Our approach so far
– Event based

• Polling strategy
– Do not listen to the control
– Check the value when you choose
– Often fraught with problems, but may have an 

appropriate use in some cases
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Repaint (Handout #15)

• How does a GUI work?
– Objects in memory, storing state as strings, ints, 

pointers
– System sends paintComponent() messages to 

Objects
– Objects draw themselves
– System maps user clicks, keystrokes etc. to 

notification messages sent to the objects
• Object register interest in certain messages
• Objects react to messages
• Appears to user that their actions caused the change
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paintComponent()

• paintComponent() is System driven
– You do not call paintComponent
– The System calls it when needed

• Debugging paintComponent()…
– Add a g.drawRect() in the first line

• Make sure it is being called
• Similar to using System.out.println() in text mode

– Can also use System.out.println() and look at the console

– Check height and width of the component
– Add a beep

• Toolkit.getDefaultToolkit().beep()
– Press CTRL-SHIFT-F1 to get a debugging dump
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paintComponent()

• paintComponent()
– Looks at the state of the object
– Draws the pixels that represent that state

• Cardinal rule for paintComponent()
– Should not modify the state of the object
– paintComponent should be read-only

Obect in memory -- has 
assorted ivars: int, boolean 
string, .... which collectively 
define its current state. Some of 
that state affects the appearance 
on screen.

paintComponent()
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Repaint

• How do you tell an object to draw?
– You request a redraw (repaint())

• 90% of drawing is automatic
– System takes care of calling paintComponent()

• Expose event – changing the z-order of a component
• Resize events
• Scroll events

• Repaint() is used for cases the System doesn’t 
catch
– component.repaint()
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Repaint

• Repaint is asynchronous
– It does not do the drawing immediately

• It “requests” the system to call paintComponent()
– Behind the scenes

• The System maintains an event queue
• repaint() simply adds a request on the event queue
• The system draw thread will dequeue the draw 

request and ultimately call paintComponent()

• Do not call paintComponent()!
– Call repaint() and the system will schedule a 

call to paintComponent()
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Up-to-date Repaint model

• Keeping objects and pixels in sync
– Objects have a lot of state

• Strings, pointers, booleans
– The state determines what is drawn on the 

screen
– Pixels

• Are a function of the object state (ala 
paintComponent())

• When state changes
– Call repaint() in order to trigger a 

paintComponent() using the new object state
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Setter Repaint Pattern

• Setters
– Change the object state

• Whenever object state is changed
– Call repaint() to keep the pixels in sync
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Face Repaint Example

• Default state:
– Smiley face
– ivar: boolean angry = false

• paintComponent()
– Looks at value of angry ivar to change color accordingly
– Draws the smiley

// smiley -- draws in red if angry
public void paintComponent(Graphics g) {

if (angry) g.setColor(Color.red);
else g.setColor(Color.blue);
// draw smiley

} 
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Face Repaint Example

• Setter Repaint Pattern in the example
– setAngry() should call repaint

public void setAngry(boolean angry) {
this.angry = angry;
repaint();

}
• Could be intelligent and call repaint only when 

needed
public void setAngry(boolean angry) {

if (this.angry != angry) {
this.angry = angry;
repaint();

}
} 
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Repaint tips

• Remember
– Change in object state call repaint

• Design tips
– Good client design means that the programmer 

shouldn’t have to remember when to call repaint
• Your code should do it at the right time

– Tempting to sprinkle repaint calls
• Performance hit. Be smart about it.

– What happens if paintComponent() calls repaint()?
• “Bad things happen”
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Repaint Example

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Repaint Example Code

• Code walk through….

– Widget.java
– Boxer.java
– Repaint.java

• Layout
• Event handling with listeners
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Erasing

• We do not actively erase in java
– To erase something, simply don’t draw it in 

paintComponent
• paintComponent starts out with a erased 

canvas
– Draws components back to front

• What you draw later is drawn on top

• Again
– To erase something, just don’t draw it
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• Fish with a hat

• Fish without a hat

Fish Example
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The Fish class…

void paintComponent() {
// draw fish body
if (hasHat) // draw the hat

}
void setHat(boolean hat) {

hasHat = hat;
repaint();

}
• Scenario: fish.hasHat is true. Send 

fish.setHat(false) -- the hat disappears
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Boxer example

• Boxer draws the image when image ivar is 
not null
– To erase the image – set the image ivar to 

null and repaint
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Smart Repaint

• Painting the screen can be time consuming
– One approach is to paint only those region which 

need to be painted
– System already does this for most events (expose, 

resize, scroll etc)
• But

– The programmer can also be intelligent and tell the 
system which regions need painting

– Done with repaint(Rectangle r)
• Repaint just old+new rectangles when a component moves
• We will see more of this soon…
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MouseTracking (Handout #16)

• MoueListener and MouseMotionListener
– To get notification about mouse event over a 

component
– The component itself is the source of the 

notification
• Add the listener to the component
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Listener vs. Adapter Style

• Problem
– Listener has a bunch of abstract methods

• 5 in MouseListener
– We typically care only about implementing one or two

• Solution
– “Adapter” calsses have empty { } definitions of all 

methods
– Only need to implement the ones we care about

• The adapter catches the others
• Gotcha

– If you write your method prototype wrong you won’t 
override the empty { } implementation in the adapter!

• Example MousePressed() instead of mousePressed()
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MouseListener Interface

public interface MouseListener extends EventListener {
/**
* Invoked when the mouse has been clicked on a component.

(press+release)
*/

public void mouseClicked(MouseEvent e);
/**
* Invoked when a mouse button has been pressed on a component.
*/

public void mousePressed(MouseEvent e);
/**
* Invoked when a mouse button has been released on a component.
*/

public void mouseReleased(MouseEvent e);
/**
* Invoked when the mouse enters a component.
*/

public void mouseEntered(MouseEvent e);
/**
* Invoked when the mouse exits a component.
*/

public void mouseExited(MouseEvent e);
}
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MouseAdapter Class

public abstract class MouseAdapter implements MouseListener {
/**
* Invoked when the mouse has been clicked on a component.
*/

public void mouseClicked(MouseEvent e) {}
/**
* Invoked when a mouse button has been pressed on a component.
*/

public void mousePressed(MouseEvent e) {}
/**
* Invoked when a mouse button has been released on a component.
*/

public void mouseReleased(MouseEvent e) {}
/**
* Invoked when the mouse enters a component.
*/

public void mouseEntered(MouseEvent e) {}
/**
* Invoked when the mouse exits a component.
*/

public void mouseExited(MouseEvent e) {}
}
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Press: MouseListener

• How does a component handle a mouse 
press?

component.addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent e) {

// called when mouse button first pressed on component
}
});
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Motion: MouseMotionListener

• How does a component detect a mouse 
movement?

component.addMouseMotionListener(new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

// called as mouse is dragged, after initial click
}
});
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Delta rule for mouse motion

• Cannot use absolute coordinates for mouse 
movement!
– Setting the position to the actual mouse coordinated 

may result is weird movements
• Correct approach

– Get the current coordinates
– Compare to the last known coordinates

• Compute the delta
– Apply the delta to the position of the object

• Test-case
– A click-release with no motion should not change any 

state in a correct implementation of relative mouse 
tracking
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DotPanel Example
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DotPanel Example Code

• Code walkthrough…

– DotPanel.java
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Summary

• Today
– Inner Classes

• Review
• Inner/Nested Class Example

– Anonymous Inner Classes
– Listener model

• Button Listener Example
– Repaint
– Mouse Tracking

• Assigned Work
– HW 2: Java Draw

• Due before midnight on Wednesday, July 23rd, 2003
• Start early!!
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