
1

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 6
Inner Classes, Listeners, Repaint

Manu Kumar
sneaker@stanford.edu

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

HW#1: Pencil Me In Status!?

• How was Homework #1?
– Comments please?
– SITN students feel free to email comments to

sneaker@stanford.edu

• Reminder:
– Still have late days!

• Don’t panic if you haven’t finished yet
• Plan accordingly for future assignments

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 3 Handout for today!
– #14: HW 2: JavaDraw

• Due before midnight Wednesday July 23rd, 2003
– #15: Repaint
– #16: Mouse

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Homework #2: Java Draw Demo

• Live demo of the solution to HW#2

• Tips
– Make sure to read the handout several times
– Design first, code later

• Spend time in designing your classes on paper
• Use diagrams, sketches

– You can never write all the code for all the
functionality without incrementally compiling and
testing!!

• We give you working code!
• Add functionality – Compile – Test – Repeat

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Lecture-Homework mapping

• HW #2 will use
– OOP concepts

• Inheritance, overriding, polymorphism
• Abstract classes

– Drawing in Java
• Layouts
• paintComponent()

– Event handling (Today)
• Anonymous Inner classes

– Repaint (Today)
– Mouse Tracking (Today/Thursday)
– Advanced Drawing (Thursday)
– Object Serialization (Thursday)

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last Time
– Continued with Drawing in Java
– Java Swing classes

• JComponent
• Graphics Object
• MyComponent Example

– Layout Managers
• Flow, Box and Border
• Nesting layouts
• Layout Example

– Inner Classes

2

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Today

• Inner Classes
– Review
– Inner/Nested Class Example

• Anonymous Inner Classes
• Listener model

– Button Listener Example
• Repaint
• Mouse Tracking

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner Classes (Handout #12)

• Inner Class
– A class definition inside a class
– Generally used as a private utility class which

does not need to be seen by others classes
– Operates as a sub-part of the outer class
– It can have constructors, instance variables

and methods, just like a regular class

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner Class access

• Outer and inner classes can access each other
state!
– Even if private!
– Stylistically, acceptable as they are both from a

common code base
• Inner class always created inside a containing

class (outer class)
– It always has a pointer to the outer object

• (Classname.this, example: Outer.this)
– Can access instance variables automatically

• Use inner class when there is a natural need to
access the variables of the outer class
– Otherwise use a nested class (coming up!)

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner Class example

public class Outer {
private int ivar;

// inner class definition
private class Inner {

void foo() {
// we can "see" our outer class automatically
ivar = 13;

}
}

public void test() {
ivar = 10;
Inner in = new Inner();
in.foo();
...

}
}

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Nested Class

• Like an inner class
– But does not have a pointer to the outer

object
– Does not have automatic access to the ivars

of the outer object
• Users the static keyword

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Nested Class example

public class Outer {
private int ivar;

// a class known only to Outer
private static class Nested {

void foo() {
// no automatic access to outer ivars

}
}

public void test() {
Nested nested = new Nested();
nested.foo();
...

}
}

3

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example

• Each inner object is created in the context of a
single, "owning", outer object
– At runtime, the inner object has a pointer to its outer

object which allows access to the outer object.
• Each inner object can access the ivars/methods

of its outer object
– Can refer to the outer object using its classname as

"Outer.this".
• The inner/outer classes can access each

other's ivars and methods, even if they are
"private“
– Stylistically, the inner/outer classes operate as a

single class that is superficially divided into two.

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Code

// Outer.java

public class Outer {
private int a;

private void increment() {
a++;

}

private class Inner extends Object {
private int b;

private Inner(int initB) {
b = initB;

}

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Code

private void demo() {
// access our own ivar
System.out.println("b: " + b);

// access the ivar of our outer object
System.out.println("a: " + a);

// message send can also go to the outer object
increment();

/*
Outer.this refers to the outer object, so could say
Outer.this.a or Outer.this.increment()
*/

}
}

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Code

// Nested class is like an inner class, but
// without a pointer to the outer object.
// (uses the keyword "static")
private static class Nested {

private int c;

void demo() {
c = 11; // this works
// b = 13; // no does not compile --
// nested object does not have pointer
// to outer object

}
}

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Code

public void test() {
a = 10;
Inner i1 = new Inner(1);
Inner i2 = new Inner(2);

i1.demo();
i2.demo();

Nested n = new Nested();
n.demo();

}

public static void main(String[] args) {
Outer outer = new Outer();
outer.test();

}
}

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Inner/Nested Example Output

Output:

b: 1
a: 10
b: 2
a: 11

4

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Listeners (Handout #13)

• Anonymous Inner Classes
– An inner class created on the fly using a quick and

dirty syntax (no name!)
– Convenient for creating small inner classes which

play the role of callback function pointers (will see an
example soon)

– When compiled they look like Outer$1, Outer$2
• Stylistic notes

– Useful for small sections of code
– If it requires non-trivial ivars or methods, then a true

inner class is better

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Anonymous Inner Classes

• Do not have a name
• Does not have a constructor

– Relies on the default constructor of the super
class

• Does not have access to local stack
variables (parameters to a method)
– Unless they are declared final

• Example
– Class Outer. Anonymous Inner class

subclassed off of a class called Superclass

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Anonymous Inner Class Example
public class Outer {

int ivar;

public Superclass method() {
int sum; // ordinary stack var
sum = ivar + 1;
final int temp = ivar + 1; // stack var, but declared final (constant)
// Create new anonymous inner class, subclassed off Superclass
Superclass s = new Superclass() {

private int x = 0;
public void foo() {

x++; // x of inner class
ivar++; // ivar of outer class
bar(); // inherited from Superclass
// x = sum; // no, cannot see sum
x = temp; // this works, since temp is final

}
};
return(s); // later on, someone can send s.foo()

}
...

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

final var trick

• Inner classes can see ivars of outer objects
• Inner classes cannot see stack variables

(parameters)
• However

– Inner classes can see “final” stack variables
• Why

– Inlining of finals by the compiler
• Declare stack variables as final to communicate

their value to an anonymous inner class
• Outer.this os the pointer to the outer object

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Controls and Listeners

• Theory
– Source

• Buttons, controls etc.
– Listener

• An Object that wants to know when the control is
operated

– Notification Message
• A message sent from the source to the listener as

a notification that the event has occured

• Essentially: registering callbacks

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Listeners and Interface

• An Object may be interested in multiple
events
– It can implement multiple listener interfaces

• Once an object implements a listener
interface, it can then be added to the
source buy using
– source.addListener(Listener l)

• Interfaces are key in the ability to
implement the Listener model

5

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Source-Listener Interaction

Source

Listener

ListeneraddListener

addListener

Notification of event

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Listener Interface

• ActionListener Interface
– Objects that would like to listen to a JButton

must implement ActionListener

public interface ActionListener extends EventListener {
/**
* Invoked when an action occurs.
*/
public void actionPerformed(ActionEvent e);

}

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Notification Prototype

• The message prototype defined in the
ActionListener Interface
– The message the button sends

• ActionEvent parameter includes extra info
– A pointer to the source object (e.getSource())
– When the event happened
– Any modifier keys held down

public void actionPerformed(ActionEvent e);
Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

source.addXXX(listener)

• To setup the listener relationship, the
listener must register with the source
– Example: button.addActionListener(listener)

• The listener must implement the
ActionListener interface
– It must respond to the message that the

button will send

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Event Notification

• When the action happens
– Button is clicked…

• The source iterates through its listeners
• Sends each listener the notification

– JButton send the actionPerformed() message
to each listener

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Using a Button and a Listener #1

• Component implements ActionListener
– The component could implement the ActionListener

interface directly
– Register “this” as the listener object

class MyComponent extends JComponent
implements ActionListener {
...
// in the JComponent ctor
button.addActionListener(this);

6

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Using a Button and a Listener #2

• Create an inner class
– Create a MyListener inner class which

implements ActionListener
– Create a new MyListener object
– Add it via button.addXXX(listener)

// in the JComponent ctor
ActionListener listener = new MyActionListener();
button.addActionListener(listener);

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Using a Button and a Listener #3

• Anonymous Inner class
– Most common method!
– Create an Anonymous Inner Class that implements the interface

• Can be created on the fly inside the method!

button = new JButton("Beep");
panel.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

}
);

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

ButtonListener Example Code

// ListenerFrame.java
import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;
import java.awt.event.*;
/*
Demonstrates bringing up a frame with a couple of buttons in it.
Demonstrates using anonymous inner class listener.
*/
public class ListenerFrame extends JFrame {

private JLabel label;

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

public ListenerFrame() {
super("ListenerFrame");

JComponent content = (JComponent) getContentPane();
content.setLayout(new FlowLayout());

JButton button = new JButton("Beep!");
content.add(button);

// ----
// Creating an action listener in 2 steps...

// 1. Create an inner class subclass of ActionListener
ActionListener listener =

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

};

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

// 2. Add the listener to the button
button.addActionListener(listener);

// ----
// Creating a listener in 1 step...

// Create a little panel to hold a button
// and a label
JPanel panel = new JPanel();
content.add(panel);
JButton button2 = new JButton("Yay!");
label = new JLabel("Woo Hoo");
panel.add(button2);
panel.add(label);

7

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

// This listener adds a "!" to the label.
button2.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

String text = label.getText();
label.setText(text + "!");
// note: we have access to "label" of

outer class
// we do not have access to local vars

like 'panel',
// unless they are declared final.

}
}

);

pack();
setVisible(true);

}

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Misc Listeners

• JCheckBox
– Uses ActionListener, like JButton
– Responds to boolean isSelected() to see if it is

currently checked
• JSlider

– Component with min/max/current values
– Users StateChangedListener interface

• Notification is stateChanged(ChangeEvent e)
• e.getSource() to get a pointer to the source

– Responds to int getValue() to get current value

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Event handling Strategies

• Listener strategy
– Our approach so far
– Event based

• Polling strategy
– Do not listen to the control
– Check the value when you choose
– Often fraught with problems, but may have an

appropriate use in some cases

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Repaint (Handout #15)

• How does a GUI work?
– Objects in memory, storing state as strings, ints,

pointers
– System sends paintComponent() messages to

Objects
– Objects draw themselves
– System maps user clicks, keystrokes etc. to

notification messages sent to the objects
• Object register interest in certain messages
• Objects react to messages
• Appears to user that their actions caused the change

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

paintComponent()

• paintComponent() is System driven
– You do not call paintComponent
– The System calls it when needed

• Debugging paintComponent()…
– Add a g.drawRect() in the first line

• Make sure it is being called
• Similar to using System.out.println() in text mode

– Can also use System.out.println() and look at the console

– Check height and width of the component
– Add a beep

• Toolkit.getDefaultToolkit().beep()
– Press CTRL-SHIFT-F1 to get a debugging dump

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

paintComponent()

• paintComponent()
– Looks at the state of the object
– Draws the pixels that represent that state

• Cardinal rule for paintComponent()
– Should not modify the state of the object
– paintComponent should be read-only

Obect in memory -- has
assorted ivars: int, boolean
string, which collectively
define its current state. Some of
that state affects the appearance
on screen.

paintComponent()

8

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Repaint

• How do you tell an object to draw?
– You request a redraw (repaint())

• 90% of drawing is automatic
– System takes care of calling paintComponent()

• Expose event – changing the z-order of a component
• Resize events
• Scroll events

• Repaint() is used for cases the System doesn’t
catch
– component.repaint()

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Repaint

• Repaint is asynchronous
– It does not do the drawing immediately

• It “requests” the system to call paintComponent()
– Behind the scenes

• The System maintains an event queue
• repaint() simply adds a request on the event queue
• The system draw thread will dequeue the draw

request and ultimately call paintComponent()

• Do not call paintComponent()!
– Call repaint() and the system will schedule a

call to paintComponent()

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Up-to-date Repaint model

• Keeping objects and pixels in sync
– Objects have a lot of state

• Strings, pointers, booleans
– The state determines what is drawn on the

screen
– Pixels

• Are a function of the object state (ala
paintComponent())

• When state changes
– Call repaint() in order to trigger a

paintComponent() using the new object state

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Setter Repaint Pattern

• Setters
– Change the object state

• Whenever object state is changed
– Call repaint() to keep the pixels in sync

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Face Repaint Example

• Default state:
– Smiley face
– ivar: boolean angry = false

• paintComponent()
– Looks at value of angry ivar to change color accordingly
– Draws the smiley

// smiley -- draws in red if angry
public void paintComponent(Graphics g) {

if (angry) g.setColor(Color.red);
else g.setColor(Color.blue);
// draw smiley

}

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Face Repaint Example

• Setter Repaint Pattern in the example
– setAngry() should call repaint

public void setAngry(boolean angry) {
this.angry = angry;
repaint();

}
• Could be intelligent and call repaint only when

needed
public void setAngry(boolean angry) {

if (this.angry != angry) {
this.angry = angry;
repaint();

}
}

9

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Repaint tips

• Remember
– Change in object state call repaint

• Design tips
– Good client design means that the programmer

shouldn’t have to remember when to call repaint
• Your code should do it at the right time

– Tempting to sprinkle repaint calls
• Performance hit. Be smart about it.

– What happens if paintComponent() calls repaint()?
• “Bad things happen”

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Repaint Example

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Repaint Example Code

• Code walk through….

– Widget.java
– Boxer.java
– Repaint.java

• Layout
• Event handling with listeners

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Erasing

• We do not actively erase in java
– To erase something, simply don’t draw it in

paintComponent
• paintComponent starts out with a erased

canvas
– Draws components back to front

• What you draw later is drawn on top

• Again
– To erase something, just don’t draw it

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

• Fish with a hat

• Fish without a hat

Fish Example

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

The Fish class…

void paintComponent() {
// draw fish body
if (hasHat) // draw the hat

}
void setHat(boolean hat) {

hasHat = hat;
repaint();

}
• Scenario: fish.hasHat is true. Send

fish.setHat(false) -- the hat disappears

10

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Boxer example

• Boxer draws the image when image ivar is
not null
– To erase the image – set the image ivar to

null and repaint

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Smart Repaint

• Painting the screen can be time consuming
– One approach is to paint only those region which

need to be painted
– System already does this for most events (expose,

resize, scroll etc)
• But

– The programmer can also be intelligent and tell the
system which regions need painting

– Done with repaint(Rectangle r)
• Repaint just old+new rectangles when a component moves
• We will see more of this soon…

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

MouseTracking (Handout #16)

• MoueListener and MouseMotionListener
– To get notification about mouse event over a

component
– The component itself is the source of the

notification
• Add the listener to the component

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Listener vs. Adapter Style

• Problem
– Listener has a bunch of abstract methods

• 5 in MouseListener
– We typically care only about implementing one or two

• Solution
– “Adapter” calsses have empty { } definitions of all

methods
– Only need to implement the ones we care about

• The adapter catches the others
• Gotcha

– If you write your method prototype wrong you won’t
override the empty { } implementation in the adapter!

• Example MousePressed() instead of mousePressed()

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

MouseListener Interface

public interface MouseListener extends EventListener {
/**
* Invoked when the mouse has been clicked on a component.

(press+release)
*/

public void mouseClicked(MouseEvent e);
/**
* Invoked when a mouse button has been pressed on a component.
*/

public void mousePressed(MouseEvent e);
/**
* Invoked when a mouse button has been released on a component.
*/

public void mouseReleased(MouseEvent e);
/**
* Invoked when the mouse enters a component.
*/

public void mouseEntered(MouseEvent e);
/**
* Invoked when the mouse exits a component.
*/

public void mouseExited(MouseEvent e);
}

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

MouseAdapter Class

public abstract class MouseAdapter implements MouseListener {
/**
* Invoked when the mouse has been clicked on a component.
*/

public void mouseClicked(MouseEvent e) {}
/**
* Invoked when a mouse button has been pressed on a component.
*/

public void mousePressed(MouseEvent e) {}
/**
* Invoked when a mouse button has been released on a component.
*/

public void mouseReleased(MouseEvent e) {}
/**
* Invoked when the mouse enters a component.
*/

public void mouseEntered(MouseEvent e) {}
/**
* Invoked when the mouse exits a component.
*/

public void mouseExited(MouseEvent e) {}
}

11

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Press: MouseListener

• How does a component handle a mouse
press?

component.addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent e) {

// called when mouse button first pressed on component
}
});

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Motion: MouseMotionListener

• How does a component detect a mouse
movement?

component.addMouseMotionListener(new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

// called as mouse is dragged, after initial click
}
});

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Delta rule for mouse motion

• Cannot use absolute coordinates for mouse
movement!
– Setting the position to the actual mouse coordinated

may result is weird movements
• Correct approach

– Get the current coordinates
– Compare to the last known coordinates

• Compute the delta
– Apply the delta to the position of the object

• Test-case
– A click-release with no motion should not change any

state in a correct implementation of relative mouse
tracking

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

DotPanel Example

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

DotPanel Example Code

• Code walkthrough…

– DotPanel.java

Thursday, July 10th, 2003 Copyright © 2003, Manu Kumar

Summary

• Today
– Inner Classes

• Review
• Inner/Nested Class Example

– Anonymous Inner Classes
– Listener model

• Button Listener Example
– Repaint
– Mouse Tracking

• Assigned Work
– HW 2: Java Draw

• Due before midnight on Wednesday, July 23rd, 2003
• Start early!!

	CS193J: Programming in JavaSummer Quarter 2003Lecture 6Inner Classes, Listeners, Repaint
	HW#1: Pencil Me In Status!?
	Handouts
	Homework #2: Java Draw Demo
	Lecture-Homework mapping
	Recap
	Today
	Inner Classes (Handout #12)
	Inner Class access
	Inner Class example
	Nested Class
	Nested Class example
	Inner/Nested Example
	Inner/Nested Example Code
	Inner/Nested Example Code
	Inner/Nested Example Code
	Inner/Nested Example Code
	Inner/Nested Example Output
	Listeners (Handout #13)
	Anonymous Inner Classes
	Anonymous Inner Class Example
	final var trick
	Controls and Listeners
	Listeners and Interface
	Source-Listener Interaction
	Listener Interface
	Notification Prototype
	source.addXXX(listener)
	Event?Notification
	Using a Button and a Listener #1
	Using a Button and a Listener #2
	Using a Button and a Listener #3
	Button Listener Example
	ButtonListener Example Code
	Button Listener Example
	Button Listener Example
	Button Listener Example
	Misc Listeners
	Event handling Strategies
	Repaint (Handout #15)
	paintComponent()
	paintComponent()
	Repaint
	Repaint
	Up-to-date Repaint model
	Setter Repaint Pattern
	Face Repaint Example
	Face Repaint Example
	Repaint tips
	Repaint Example
	Repaint Example Code
	Erasing
	Fish Example
	The Fish class…
	Boxer example
	Smart Repaint
	MouseTracking (Handout #16)
	Listener vs. Adapter Style
	MouseListener Interface
	MouseAdapter Class
	Press: MouseListener
	Motion: MouseMotionListener
	Delta rule for mouse motion
	DotPanel Example
	DotPanel Example Code
	Summary

