
Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 7
Repaint, Mouse, Advanced Drawing, Object

Serialization

Manu Kumar
sneaker@stanford.edu

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 2 Handouts for today!
– #17: Advanced Drawing
– #18: Object Serialization

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last Time
– HW#1 Feedback
– HW#2 Live Demo

• Link between lecture materials and homework
– Inner Classes
– Anonymous Inner Classes
– Listener model

• Button Listener Example
– Repaint

• Left off before Repaint example

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Lecture-Homework mapping revisited

• HW #2 will use
– OOP concepts

• Inheritance, overriding, polymorphism
• Abstract classes

– Drawing in Java
• Layouts
• paintComponent()

– Event handling
• Anonymous Inner classes

– Repaint (continues Today)
– Mouse Tracking (Today)
– Advanced Drawing (Today)
– Object Serialization (Today/Thursday)

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Today

• Continue with Repaint
– Repaint example code walkthrough
– Erasing

• Mouse Tracking
– DotPanel example code walkthrough

• Advanced Drawing
– Region based drawing, Blinking, Smart Repaint

• Object Serialization
– Cloning

• Not Dolly, but Java Objects ☺
– Serializing

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Review

• Control-Listener Theory
– Source

• Buttons, controls etc.
– Listener

• An Object that wants to know when the control is
operated

– Notification Message
• A message sent from the source to the listener as

a notification that the event has occurred

• Essentially: registering callbacks

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Source-Listener Interaction

Source
Component

addListener Listener

Listener

addListener

Notification of event

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Using a Button and a Listener #3

• Anonymous Inner class
– Most common method!
– Create an Anonymous Inner Class that implements the interface

• Can be created on the fly inside the method!

button = new JButton("Beep");
panel.add(button);
button.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

}
);

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

public ListenerFrame() {
super("ListenerFrame");

JComponent content = (JComponent) getContentPane();
content.setLayout(new FlowLayout());

JButton button = new JButton("Beep!");
content.add(button);

// ----
// Creating an action listener in 2 steps...

// 1. Create an inner class subclass of ActionListener
ActionListener listener =

new ActionListener() {
public void actionPerformed(ActionEvent e) {

Toolkit.getDefaultToolkit().beep();
}

};

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

// 2. Add the listener to the button
button.addActionListener(listener);

// ----
// Creating a listener in 1 step...

// Create a little panel to hold a button
// and a label
JPanel panel = new JPanel();
content.add(panel);
JButton button2 = new JButton("Yay!");
label = new JLabel("Woo Hoo");
panel.add(button2);
panel.add(label);

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Button Listener Example

// This listener adds a "!" to the label.
button2.addActionListener(

new ActionListener() {
public void actionPerformed(ActionEvent e) {

String text = label.getText();
label.setText(text + "!");
// note: we have access to "label" of

outer class
// we do not have access to local vars

like 'panel',
// unless they are declared final.

}
}

);

pack();
setVisible(true);

}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Repaint (Handout #15)

• Repaint is asynchronous
– It does not do the drawing immediately

• It “requests” the system to call paintComponent()
– Behind the scenes

• The System maintains an event queue
• repaint() simply adds a request on the event queue
• The system draw thread will dequeue the draw

request and ultimately call paintComponent()

• Do not call paintComponent()!
– Call repaint() and the system will schedule a

call to paintComponent()

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Setter Repaint Pattern

• Setters
– Change the object state

• Whenever object state is changed
– Call repaint() to keep the pixels in sync

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Face Repaint Example

• Default state:
– Smiley face
– ivar: boolean angry = false

• paintComponent()
– Looks at value of angry ivar to change color accordingly
– Draws the smiley

// smiley -- draws in red if angry
public void paintComponent(Graphics g) {

if (angry) g.setColor(Color.red);
else g.setColor(Color.blue);
// draw smiley

}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Face Repaint Example

• Setter Repaint Pattern in the example
– setAngry() should call repaint

public void setAngry(boolean angry) {
this.angry = angry;
repaint();

}
• Could be intelligent and call repaint only when

needed
public void setAngry(boolean angry) {

if (this.angry != angry) {
this.angry = angry;
repaint();

}
}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Repaint Example

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Repaint Example Code

• Code walk through….

– Widget.java
– Boxer.java
– Repaint.java

• Layout
• Event handling with listeners

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Erasing

• We do not actively erase in java
– To erase something, simply don’t draw it in

paintComponent
• paintComponent starts out with a erased

canvas
– Draws components back to front

• What you draw later is drawn on top

• Again
– To erase something, just don’t draw it

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Fish Example

• Fish with a hat

• Fish without a hat

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

The Fish class…

void paintComponent() {
// draw fish body
if (hasHat) // draw the hat

}
void setHat(boolean hat) {

hasHat = hat;
repaint();

}
• Scenario: fish.hasHat is true. Send

fish.setHat(false) -- the hat disappears

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Boxer example

• Boxer draws the image when image ivar is
not null
– To erase the image – set the image ivar to

null and repaint

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Smart Repaint

• Painting the screen can be time consuming
– One approach is to paint only those region which

need to be painted
– System already does this for most events (expose,

resize, scroll etc)
• But

– The programmer can also be intelligent and tell the
system which regions need painting

– Done with repaint(Rectangle r)
• Repaint just old+new rectangles when a component moves
• We will see more of this soon…

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

MouseTracking (Handout #16)

• MouseListener and MouseMotionListener
– To get notification about mouse event over a

component
– The component itself is the source of the

notification
• Add the listener to the component

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Listener vs. Adapter Style

• Problem
– Listener has a bunch of abstract methods

• 5 in MouseListener
– We typically care only about implementing one or two

• Solution
– “Adapter” classes have empty { } definitions of all

methods
– Only need to implement the ones we care about

• The adapter catches the others
• Gotcha

– If you write your method prototype wrong you won’t
override the empty { } implementation in the adapter!

• Example MousePressed() instead of mousePressed()

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

MouseListener Interface

public interface MouseListener extends EventListener {
/**
* Invoked when the mouse has been clicked on a component.
(press+release)

*/
public void mouseClicked(MouseEvent e);
/**
* Invoked when a mouse button has been pressed on a component.
*/

public void mousePressed(MouseEvent e);
/**
* Invoked when a mouse button has been released on a component.
*/

public void mouseReleased(MouseEvent e);
/**
* Invoked when the mouse enters a component.
*/

public void mouseEntered(MouseEvent e);
/**
* Invoked when the mouse exits a component.
*/

public void mouseExited(MouseEvent e);
}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

MouseAdapter Class

public abstract class MouseAdapter implements MouseListener {
/**
* Invoked when the mouse has been clicked on a component.
*/

public void mouseClicked(MouseEvent e) {}
/**
* Invoked when a mouse button has been pressed on a component.
*/

public void mousePressed(MouseEvent e) {}
/**
* Invoked when a mouse button has been released on a component.
*/

public void mouseReleased(MouseEvent e) {}
/**
* Invoked when the mouse enters a component.
*/

public void mouseEntered(MouseEvent e) {}
/**
* Invoked when the mouse exits a component.
*/

public void mouseExited(MouseEvent e) {}
}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Press: MouseListener

• How does a component handle a mouse
press?

component.addMouseListener(new MouseAdapter() {
public void mousePressed(MouseEvent e) {

// called when mouse button first pressed on component
}
});

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Motion: MouseMotionListener

• How does a component detect a mouse
movement?

component.addMouseMotionListener(new MouseMotionAdapter() {
public void mouseDragged(MouseEvent e) {

// called as mouse is dragged, after initial click
}
});

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Delta rule for mouse motion

• Cannot use absolute coordinates for mouse
movement!
– Setting the position to the actual mouse coordinated

may result is weird movements
• Correct approach

– Get the current coordinates
– Compare to the last known coordinates

• Compute the delta
– Apply the delta to the position of the object

• Test-case
– A click-release with no motion should not change any

state in a correct implementation of relative mouse
tracking

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

DotPanel Example

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

DotPanel Example Code

• Code walkthrough…

– DotPanel.java

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Advanced Drawing (Handout #17)

• JPanel
– Simple component that drawls itself
– Subclass of JComponent
– Use setBackground to get an automatic background

color
– Use setOpaque(true) in order to tell the system that

we are drawing every pixel
• Optimization since then the system doesn’t draw what is

behind us

– Call super.paintComponent() from paintComponent()
• Graphics will be erased to background color

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Clipping Region

• The 2D region within which the system will
accept changes to what is shown on the screen
– Any pixel changes outside the clipping region are

ignored.
• System sets a “clipping region” on the Graphics

object before sending paintComponent()
– Affects all drawing operations

• Pixels outside clipping region do not get affected

– By default is set to the bounds of the component
• Basic drawing case works fine – nothing special needed
• Room to optimize for better performance

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

component.getGraphics() -- NO

• component.getGraphics()
– Almost never right to use

component.getGraphics()
– There may be special cases, but in general,

this goes against the system/paintComponent
paradigm

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Repaint Details

• Repaint call tells system what region to redraw
– repaint() uses bounds
– repaint(<Rectangle>) uses a sub-rectangle

• System maintains “update region”
– A 2D representation of areas that need to be redrawn
– Repaint call adds a region to the update region

• System paint thread
– Checks regions to be updated
– Computes intersection of region vs. components
– Initiated draw recursion down the component netsting

hierarchy
– Composites pixels back to front

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Region Based Drawing

• The drawing area is always expressed as
a region not in components
– Handles intersections and z-order correctly

• Z-order
– Visual layering of components

• Mechanics
– Draw all the components that intersect the

pixel region
– Draw the components from back to front

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Moving components

• When a component
moves
– Update the old region

• Redraw any exposed
components or erase moved
component

– Update the new region
• Redraw the component at it’s

new location

old

new

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Smart Repaint revisited

• Repaint just the rectangle of the
component that needs to be redrawn
– Not the entire component or window bounds

• Makes the drawing cycle faster
– Smoother drawing, esp if clipping region is

small
• repaint(x, y, width, height) does this
• Must repaint both old and new regions

– Union of old and new clipping rectangles

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Coalescing

• Intelligently combining multiple repaint()
requests into a single draw operation
– Benefit of asynchronous repaint() calls

• No 1-1 correspondence between repaint() and
paintComponent() calls
– Multiple repaints can be coalesced by the system and

handles by a single paintComponent() call
• Time: Multiple repaint requests are “coalesced”

into one draw operation
– You can repaint() 3 times, but it just draws once

• Space: Repaint regions may overlap, but the
ares of intersection is drawn once
– System is maintaining the update region

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Coalescing Example

• JSlider in Repaint example
– As the slide moves it sends multiple

setCount() messages to the Widget
• If we move it quickly it would result in lots of calls

– However, it doesn’t redraw every state
• The previous states would all be overwritten by the

last state anyway
– Draws the last state by coalescing the

repaint() calls and calling paintComponent
less (possibly just once) times

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Blinking Animation

• Animation Steps
– Draw old state on the screen
– Erase the old state and restore the

background
– Draw the new state on the screen

• Problem
– Erasing the old state and restoring the

background results in a blinking effect! /
– If the redraw is fast, it looks like a “shimmer”

• Still undesirable

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Solution: Double Buffering

• Concept:
– Do all the erasing and drawing in memory before

copying the final changes to the screen
• Mechanics

– Build a pixel buffer offscreen (called offscreen
graphics)

– Draw the old appearance
– Erase offscreen buffer
– Draw the new appearance to the offscreen buffer
– Copy final bits (aka “blit”) to the onscreen graphics

• Result
– Smooth animation since we minimize the changes on

the onscreen graphics

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Swing is double buffered!

• Swing double buffers automatically
– All JComponent drawing goes through a

offscreen buffer
– Graphics object passed to paintComponent is

pointer to an offscreen buffer
• Makes life easier for us as the

programmer!

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Smart Repaint Implementation

• Start with the region to draw, but make it smaller
• Find intersection of components
• Allocate an offscreen bitmap

– Exactly the size of the small update region
• Setup the origin and the clip of Graphics g to

point to the small offscreen buffer
– Drawing outside the buffer is clipped, but components

do not need to do anything special
• Copy the small buffer to the screen when done

– Smaller the region, faster the copy

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Smart Repaint Conclusion

• Using repaint(rect) to redraw just a region of the
component can be a lot pfaster
– Client components don’t need to know what is going

on, they just respond to paintComponent()
• Calling repaint(x, y, width, height)

– System is smart about using an offscreen buffer of the
size needed

• Great potential speedup

• Theme: with little work, JComponent can do
some complex drawing

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Example #1

• Circle and rectangle
– Changing the circle to be filled with a pattern

– State change Æ Repaint Æ Update Region
• Change the state of the circle to pattern = true
• Repaint just around the circle
• Add the square to the update region

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Example #1 continued

• Offscreen drawing
– Draw thread notices update region
– Creates offscreen buffer of same size

• Notice how fewer pixels need to be reased

– Clipping is set around the buffer
• Pixels outside clipping region have no effect

– Drawthread sends paintComponent() to
the components to draw themselves
back to front

• Only the parts that intersect the update
region actually draw

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Example #1 continued

• Copy bits
– Once all the drawing is done draw thread

copies the buffer back to the screen with a
fast copy (“blit”) operation

– Deletes the offscreen buffer

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Example #2: moving

• Move circle down
• Repaint

– Old rectangle
– New rectangle

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Example #2: Moving continued

• Offscreen graphics
– Same as before!

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Example #2: Moving continued

• Copy bits to screen
– Delete offscreen buffer

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Objects and Serialization (Handout #18)

• Equals revisited
– a == b tests for pointer equality only

• i.e. pointer a and b point to the same
location/object

• This is called “shallow semantics”
– boolean Object.equals(Object other)

• Defined in the Object class
– Default implementation does a == b test (shallow

semantics)

• May override to do “deep comparison”
– Example: String.equals()

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Calling equals()

{
String a = “hello”;
String b = “hello”;

(a == b) Æ false
(a.equals(b)) Æ true
(b.equals(a)) Æ true

}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Equals strategy

• boolean equals(Object other)
– Take Object, return boolean

• Must have exact prototype for overriding to work
– Return true on (this == other)
– Use (other instanceof Foo) too test class of

other
• False if not same class

– Otherwise do a field-by-field comparison of
this and other

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Student equals() example

// in Student class...
boolean equals(Object obj) {

if (obj == this) return(true);
if (!(obj instanceof Student)) return(false);
Student other = (Student)obj;
return(other.units == units)

}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Cloning

• Used to create a copy of an object
– Not just another pointer to the same object
– Cloned object has it’s own memory space

• Lets say Foo b = a.clone();
• a == b will return false
• a.equals(b) will return true!

• Copied object has same state
– But its own memory

• We use this in HW#2 for cut-copy-paste!

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Cloneable interface

• Used as a merker to indicate that the class
implements the clone() method
– Not compiler enforced
– Object.clone() is pre-built

• Create a new instance of the right class
• Assign all fields over with ‘=‘ semantics

• Object.clone() will do above default
behavior
– If class implements the cloneable interface
– Otherwise, it will through an exception

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Implementing clone()

• Implement the Cloneable interface
– Call the super classes clone method first to

copy structure
• copy = (Class) super.clone()

– Copy fields where a simple ‘=‘ is not deep
enough

• Example, arrays, arraylists, objects

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Alternative approaches

• Copy Constructor
– MyClass(MyClass myObject)

• Construct a new instance of MyClass based on the state of
MyObject

• “Factory” method
– Static method that makes new instances

• static MyClass newInstance(MyClass myObject)
• May use constructor internally

• Advantage
– Simpler than Object.clone(), no new concepts

• Disadvantage
– Client must know the class of the Object

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Eq Code example

// Eq.java

/*
Demonstrates a simple class that defines equals and clone.

*/
public class Eq implements Cloneable {

private int a;
private int[] values;

public Eq(int init) {
a = init;
values = new int[10];

}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Eq Code example: equals

/*
Does a "deep" compare of this vs. the other object.
*/
public boolean equals(Object other) {

if (other == this) return(true);
if (!(other instanceof Eq)) return(false);

Eq e = (Eq) other;

// now test if this vs. e
if (a != e.a) return(false);

if (values.length != e.values.length) return(false);
for (int i=0; i<values.length; i++) {

if (values[i] != e.values[i]) return(false);
}
return(true);

}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Eq Code example: clone()

/*
Returns a deep copy of the object.
*/
public Object clone() {

try {
// first, this creats the new memory and does '=' on all fields
Eq copy = (Eq)super.clone();

// copy the array over -- arrays respond to clone() themselves
copy.values = (int[]) values.clone();
return(copy);

}
catch (CloneNotSupportedException e) {

return(null);
}

}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Eq Code example

public static void main(String[] args) {
Eq x = new Eq(1);
Eq y = new Eq(2);
Eq z = (Eq) x.clone();

System.out.println("x == z" + (x==z)); // false
System.out.println("x.equals(z)" + (x.equals(z))); // true

}
}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Serialization

• Motivation
– A lot of code involves boring conversion from a file to

memory
• Write code in 106A to translate by hand
• HW#1 read ASCII file and required parsing

– This is a common problem!
• Java’s answer:

– Serialization
• Object know how to write themselves out to disk and to read

themselves back from disk into memory!

• We use this in HW#2 to load and save!

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Serialization / Archiving

• Objects have state in memory
• Serialization is the process of conversting

objects into a streamed state (Network,
Disk)
– No notion of an address space
– No pointers

• Serialization is also called
– Flattening, Streaming, Dehydrate (rehydrate =

read), Archiving

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

How it works?

• To write out an object
– ObjectOutputStream out;
– out.writeObject(obj)

• To read that object back in
– ObjectInputStream in;
– obj = in.readObject();

• Must be of the same type
– class and version

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Java: Automatic Serialization

• Serializable Interface
– By implementing this interface a class declares that is it willing to

be read/written by automatic serialization machinery
• Automatic Writing

– System knows how to recursively write out the state of an object
– Recursively follows pointers and writes out those objects too!
– Can handle most built in types

• int, array, Point etc.
• “transient” keyword to mark a field that should not be

serialized
– Transient fields are returned as null on reading

• Override readObject() and writeObject() for
customizations

• Versioning
– Can detect version changes

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Circularity: not an issue

• Serialization machinery will take circular
references into account and do the right
thing!

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Dot example

• Build on DotPanel example!
• saveSerial(File f)

– Given a file, write the data model to it with Java
serialization.

– Makes an Point[] array of points and writes it which
avoids the bother of iteration.

• We use an array instead of the ArrayList to avoid requiring a
1.2 VM to read the file, although maybe the ArrayList would
have been fine

• loadSerial(File f)
– Inverse of saveSerial.
– Reads an Point[] array of Points, and adds them to

our data model.

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Dot example code

public void saveSerial(File file) {
try {

ObjectOutputStream out = new ObjectOutputStream(
new FileOutputStream(file));

// Use the standard collection -> array util
// (the Point[0] tells it what type of array to return)
Point[] points = (Point[]) dots.toArray(new Point[0]);

out.writeObject(points); // serialization!

out.close(); // polite to close on the way out
setDirty(false);

}
catch (Exception e) {

e.printStackTrace();
}

}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Dot example code

private void loadSerial(File file) {
try {

ObjectInputStream in = new ObjectInputStream(new
FileInputStream(file));

// Read in the object -- the CT type should be exactly as it was written
// -- Point[] in this case.
// Transient fields would be null.
Point[] points = (Point[])in.readObject();
for (int i=0; i<points.length; i++) {

dots.add(points[i]);
}

in.close(); // polite to close on the way out
setDirty(false);

} catch (Exception e) {
e.printStackTrace();

}
}

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

HW#2 note

• CS193J classes for serialization
– shield you from the exceptions, but otherwise behave like

ObjectOutputStream and ObjectInputStream

SimpleObjectWriter w;
SimpleObjectWriter w =

SimpleObjectWriter.openFileForWriting(filename);
w.writeObject(<object>) -- write an array or object (Point[] in above

example)
w.close()

SimpleObjectReader r;
SimpleObjectReader r =

SimpleObjectReader.openFileForReading(filename);
obj = r.readObject() -- returns the object written -- cast to what it is

(Point [] in above example)
r.close()

Thursday, July 15th, 2003 Copyright © 2003, Manu Kumar

Summary

• Today
– Repaint

• Repaint Example
• Erasing

– Mouse Tracking
• DotPanel Example

– Advanced Drawing
• Region based drawing, blinking, smart repaint

– Object Serialization
• Cloning and Serializing

• Assigned Work Reminder
– HW 2: Java Draw

• Due before midnight on Wednesday, July 23rd, 2003
• Start early!!

	CS193J: Programming in JavaSummer Quarter 2003Lecture 7Repaint, Mouse, Advanced Drawing, Object Serialization
	Handouts
	Recap
	Lecture-Homework mapping revisited
	Today
	Review
	Source-Listener Interaction
	Using a Button and a Listener #3
	Button Listener Example
	Button Listener Example
	Button Listener Example
	Repaint (Handout #15)
	Setter Repaint Pattern
	Face Repaint Example
	Face Repaint Example
	Repaint Example
	Repaint Example Code
	Erasing
	Fish Example
	The Fish class…
	Boxer example
	Smart Repaint
	MouseTracking (Handout #16)
	Listener vs. Adapter Style
	MouseListener Interface
	MouseAdapter Class
	Press: MouseListener
	Motion: MouseMotionListener
	Delta rule for mouse motion
	DotPanel Example
	DotPanel Example Code
	Advanced Drawing (Handout #17)
	Clipping Region
	component.getGraphics() -- NO
	Repaint Details
	Region Based Drawing
	Moving components
	Smart Repaint revisited
	Coalescing
	Coalescing Example
	Blinking Animation
	Solution: Double Buffering
	Swing is double buffered!
	Smart Repaint Implementation
	Smart Repaint Conclusion
	Example #1
	Example #1 continued
	Example #1 continued
	Example #2: moving
	Example #2: Moving continued
	Example #2: Moving continued
	Objects and Serialization (Handout #18)
	Calling equals()
	Equals strategy
	Student equals() example
	Cloning
	Cloneable interface
	Implementing clone()
	Alternative approaches
	Eq Code example
	Eq Code example: equals
	Eq Code example: clone()
	Eq Code example
	Serialization
	Serialization / Archiving
	How it works?
	Java: Automatic Serialization
	Circularity: not an issue
	Dot example
	Dot example code
	Dot example code
	HW#2 note
	Summary

