
Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 9
Threading, Synchronization, Interruption

Manu Kumar
sneaker@stanford.edu



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 1 Handout for today!
– #21: Threading 3



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Roadmap

• We are half way through this course!
– We have covered

• Course Overview / Introduction to OOP/Java
• OOP / Java
• Collections and more OOP
• OOP Inheritance, Abstract Classes and Interfaces
• Java Swing and LayoutManagers
• Inner Classes and Listeners
• Repaint, Mouse Tracking and Advanced Drawing
• Object Serialization and Introduction to Threading



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Coming up…

• Threading – synchronization, wait/notify, 
swing thread

• MVC / Tables
• Exceptions / Files and Streams
• XML
• SAX XML Parsing
• Advanced Java
• Guest Speaker



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last Time
– Object Serialization

• Cloning
– Not Dolly, but Java Objects ☺

• Serializing

– Introduction to Threading
• Motivation
• Java threads

– Simple Thread Example

• Assigned Work Reminder
– HW 2: Java Draw

• Due before midnight on Wednesday, July 23rd, 2003



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Today

• Review Introduction to Threading
– Java threads

• Simple Thread Example

• Threading 2
– Race Conditions
– Locking
– Synchronized Method
– Thread Interruption

• We’ll try to end a little early to let you get back to 
Homework #2!
– Due tomorrow



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Threads

• The ability to do multiple things at once 
within the same application
– Finer granularity of concurrency

• Lightweight
– Easy to create and destroy

• Shared address space
– Can share memory variables directly
– May require more complex synchronization 

logic because of shared address space



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Advantages of threads…
• Use multiple processors

– Code is partitioned in order to be able to use n 
processors at once

• This is not easy to do! But Moore’s Law may force us in this 
direction

• Hide network/disk latency
– While one thread is waiting for something, run the 

others
– Dramatic improvements even with a single CPU

• Need to efficiently block the connections that are waiting, 
while doing useful work with the data that has arrived

– Writing good network codes relies on concurrency!
• Homework #3b will be a good example of this

• Keeping the GUI responsive
– Separate worker threads from GUI thread



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Java Threads

• Java includes built-in support for threading!
– Other languages have threads bolted-on to an 

existing structure
• VM transparently maps threads in Java to OS 

threads
– Allows threads in Java to take advantage of hardware 

and operating system level advancements
– Keeps track of threads and schedules them to get 

CPU time
– Scheduling may be pre-emptive or cooperative



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Current Running Thread

• “Thread of control” or “Running thread”
– The thread which is currently executing some 

statements 
• A thread of execution

– Executing statements, sending messages
– Has its own stack, separate from other 

threads
• A message send sends the current 

running thread over to execute the code in 
the receiver



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Java Thread class

• A Thread is just another object in Java
– It has an address, responds to messages etc.
– Class Thread 

• in the default java.lang package

• A Thread object in Java is a token which 
represents a thread of control in the VM
– We send messages to the Thread object; the 

VM interprets these messages and does the 
appropriate operations on the underlying 
threads in the OS



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Creating Threads in Java

• Two approaches
– Subclassing Thread

• Subclass java.lang.Thread
• Override the run() method

– Implementing Runnable
• Implement the runnable interface
• Provide an implementation for the run() method
• Pass the runnable object into the constructor of a 

newThread Object



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Why two approaches?

• Remember: Java supports only single-
inheritance
– If you need to extend another class, then 

cannot extend thread at the same time
• Must use the Runnable pattern

• Two are equivalent
– Whether you subclass Thread or implement 

Runnable, the resulting thread is the same
– Runnable pattern just gives more flexibility



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Simple Thread Example

/*
Demonstrates creating a couple worker threads, running them,
and waiting for them to finish.

Threads respond to a getName() method, which returns a string
like "Thread-1" which is handy for debugging.

*/
public class Worker1 extends Thread {

public void run() {
long sum = 0;
for (int i=0; i<100000; i++) {

sum = sum + i; // do some work

// every n iterations, print an update
// (a bitwise & would be faster -- mod is slow)
if (i%10000 == 0) {

System.out.println(getName() + " " + i);
}

}
}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Simple Thread Example

public static void main(String[] args) {
Worker1 a = new Worker1();
Worker1 b = new Worker1();

System.out.println("Starting...");
a.start();
b.start();

// The current running thread (executing main()) blocks
// until both workers have finished
try {

a.join();
b.join();

}
catch (Exception ignored) {}

System.out.println("All done");
}

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Simple Thread Example Output
Starting...

Thread-0 0
Thread-1 0
Thread-0 10000
Thread-0 20000
Thread-1 10000
Thread-0 30000
Thread-1 20000
Thread-0 40000
Thread-1 30000
Thread-0 50000
Thread-1 40000
Thread-0 60000
Thread-1 50000
Thread-0 70000
Thread-1 60000
Thread-0 80000
Thread-0 90000
Thread-1 70000
Thread-1 80000
Thread-1 90000
All done



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Threading 2 (Handout #20)

• Two Threading Challenges
– Mutual Exclusion

• Keeping the threads from interfering with each 
other

• Worry about memory shared by multiple threads
– Cooperation

• Get threads to cooperate
– Typically centers on handing information from one thread 

to the other, or signaling one thread that the other thread 
has finished doing something

• Done using join/wait/notify



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Critical Section

• A section of code that causes problems if 
two or more threads are executing it at the 
same time
– Typically as a result of shared memory that 

both thread may be reading or writing
• Race Condition

– When two or more threads enter a critical 
section, they are supposed to be in a race 
condition

• Both threads want to execute the code at the same 
time, but if they do then bad things will happen



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Race Condition Example

class Pair {
private int a, b;

public Pair() {
a = 0;
b = 0;

}
// Returns the sum of a and b. (reader)
public int sum() {

return(a+b);
}
// Increments both a and b. (writer)
public void inc() {

a++;
b++;

}
}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Reader/Writer Conflict

• Case
– thread1 runs inc(), while thread2 runs sum()

• thread2 could get an incorrect value if inc() is half way done
• This happens because the lines of sum() and inc() interleave

• Note
– Even a++ and b++ are not atomic statements

• Therefore, interleaving can happen at a scale finer than a 
single statement!

• a++ is really three steps: read a, increment a, write a
– Java guarantees 4-byte reads and writes will be 

atomic
– This is only a problem if the two threads are touching 

the same object and therefore the same piece of 
memory!



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Writer/Writer Conflict

• Case
– thread1 runs inc() while thread2 runs inc() on 

the same object
• The two inc()’s can interleave in order to leave the 

object in an inconsistent state

• Again
– a++ is not atomic and can interleave with 

another a++ to produce the wrong result
– This is true in most languages



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Heisenbugs

• Random Interleave – hard to observe
– Race conditions depend on having two or more 

threads “interleaving” their execution in just the right 
way to exhibit the bug

• Happens rarely and randomly, but it happens
– Interleaves are random

• Depending on system load and number of processors
• More likely to observe issue on multi-processor systems

• Tracking down concurrency bugs can be hard
– Reproducing a concurrency bug reliable is itself often 

hard
– Need to study the patterns and use theory in order to 

pre-emptively address the issue



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Java Locks

• Java includes built-in support for dealing 
with concurrency issues
– Includes keywords in order to mark critical 

sections
– Includes object locks in order to limit access 

to a single thread when necessary
• Java designed to encourage use of 

threading and concurrency
– Provides the tools needed in order to 

minimize concurrency pitfalls



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Object Lock and Synchronized keyword

• Every Java Object has as lock associated with it
• A “synchronized” keyword respects the lock of 

the receiver object
– For a thread to execute a synchronized method 

against a receiver, it must first obtain the lock of the 
receiver

– The lock is released when the method exits
– If the lock is held by another thread, the calling thread 

blocks (efficiently) till the other thread exits and the 
lock is available

– Multiple threads therefore take turns on who can 
execute against the receiver



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Receiver Lock

• The lock is in the receiver object
– Provides mutual exclusion mechanism for 

multiple threads sending messages to that 
object

– Other objects have their own lock
• If a method is not sychronized

– The thread will not acquire the lock before 
executing the method



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Sychronized Method Picture

synch a() {
 --
 --
}

ivar

ivar

thread run { 
 --
 --
}

synchronized method -- 
acquire object lock

release object lock

thread run { 
 --
 --
}

block, waiting for 
object lock

object lock



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

/*
A simple class that demonstrates using the 'synchronized'
keyword so that multiple threads may send it messages.
The class stores two ints, a and b; sum() returns
their sum, and inc() increments both numbers.

<p>
The sum() and incr() methods are "critical sections" --
they compute the wrong thing if run by multiple threads
at the same time. The sum() and inc() methods are declared
"synchronized" -- they respect the lock in the receiver object.
*/
class Pair {

private int a, b;

public Pair() {
a = 0;
b = 0;

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

// Returns the sum of a and b. (reader)
// Should always return an even number.
public synchronized int sum() {

return(a+b);
}
// Increments both a and b. (writer)
public synchronized void inc() {

a++;
b++;

}
}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

/*
A simple worker subclass of Thread.
In its run(), sends 1000 inc() messages
to its Pair object.

*/
class PairWorker extends Thread {

public final int COUNT = 1000;
private Pair pair;
// Ctor takes a pointer to the pair we use
public PairWorker(Pair pair) {

this.pair = pair;
}
// Send many inc() messages to our pair
public void run() {

for (int i=0; i<COUNT; i++) {
pair.inc();

}
}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

/*
Test main -- Create a Pair and 3 workers.
Start the 3 workers -- they do their run() --
and wait for the workers to finish.
*/
public static void main(String args[]) {

Pair pair = new Pair();
PairWorker w1 = new PairWorker(pair);
PairWorker w2 = new PairWorker(pair);
PairWorker w3 = new PairWorker(pair);
w1.start();
w2.start();
w3.start();
// the 3 workers are running
// all sending messages to the same object



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized Method Example

// we block until the workers complete
try {

w1.join();
w2.join();
w3.join();

}
catch (InterruptedException ignored) {}

System.out.println("Final sum:" + pair.sum()); // should be 6000
/*
If sum()/inc() were not synchronized, the result would
be 6000 in some cases, and other times random values
like 5979 due to the writer/writer conflicts of multiple
threads trying to execute inc() on an object at the same time.

*/
}

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Locks in Java

• Multiple acquisition of locks
– A thread can acquire the same lock multiple times

• A thread does not block waiting for itself, if it holds a lock and 
it can acquire the lock again

– Example
• inc() could call sum()

– The thread can acquire the lock again and will only be released 
when the lock count goes to zero

• Sometimes called ‘recursive locks’
• Exceptions release

– A thread releases the locks regardless of how it exits 
the method

• Graceful and ungraceful termination (exceptions) both 
release locks!

• This is critical to prevent deadlocks



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronization Problems

• Unsynchronized method warning/danger
– All methods that touch shared state must be 

synchronized
• Otherwise a thread could get in to a 

unsynchronized method without checking the lock
– A method must volunteer to obey the lock with 

the synchronized keyword
• If it makes sense for one method to by 

synchronized, probably others should be too!



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Unsynchronized Method Example

synch inc() {
 --
 --
}

ivar

ivar

thread run { 
 --
 --
}

synchronized method -- 
acquire object lock

thread run { 
 --
 --
}

object lock

inc2() {
 --
 --
}

inc2() is not synchronized, 
therefore a thread can go 
right in, ignoring the 
object lock. This will 
probably cause concurrency 
problems with the inc() 
code as both inc() and 
inc2() use the ivars. Most 
likely, inc2() should be 
synchronized.



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Transaction Semantics

• Similar concept as in Databases
– Transaction is a change that happens in full or is 

“rolled back” to have not happened at all
• Leave your objects in a consistent state

– A method gets the lock
– Makes changes to the object state (while holding the 

lock)
– Releases the lock leaving the object fully in the new 

state
– Object is not exposed when half updated

• The lock is used to keep other threads out during the update



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Split Transaction

class Account {
int balance;

public synchronized int getBal() { 
return(balance); 

}

public synchronized void setBal(int val) {
balance = val;

}
}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Split Transaction Problem

• Two thread could interleave in a way to 
give erroneous results

Thread1: { int bal = a.getBal(); bal+=100; a.setBal(bal); }
Thread2: { int bal = a.getBal(); bal+=100; a.setBal(bal); }

• Problem
– Synchronization is too fine grained

• Critical section is larger
– Tricky

• Programmer may think he/she has synchronized, 
but not adequately



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Split Transaction

• Solution
– Move the synchronization to cover entire 

critical section

public synchronized changeBal(int delta) {
balance += delta;

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Split-Transaction Vector

• Vector similar to ArrayList
– get(), set() and size() were synchronized

• Problem
– Gave programmers the illusion that their client code 

was thread-safe
• Still suffered from split-transaction errors

– Overhead for locking and unlocking even with single-
threaded code

– The entire critical section was not covered
• Example

public Object lastElement() {
return(elementAt(size()-1);

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Get In and Get Out

• For performance, better to hold the lock 
as little as possible

1. Do setup that does not require the lock
2. Acquire the lock
3. Do the critical operation
4. Release the lock
5. Do cleanup that does not require the lock



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Get In and Get Out Example

• Setting up the array is done outside of critical section

public void foo() { // not synchronized
// note: multiple threads can run these setup steps
// concurrently -- all stack vars
String[] a = new String[2];
a[0] = "hello";
a[1] = "there";
add(a); // synchronized step

}

public synchronized add(String[] array) {
// some critical section

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized(obj) {…} Block

• A variant of the synchronized method
– Acquire/Release lock for a specific object
– Uses same lock as the synchronized method

• The lock in the object

– A little slower
– A little less readable

• Synchronized methods are preferable
– But synchronized(obj) {…} gives maximum flexibility
– Can use the lock of an object other than the receiver
– Can minimize size of the critical section



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized(obj) {…} syntax

void someOperation(Foo foo) {
int sum = 0;
synchronized(foo) { // acquire foo lock

sum += foo.value;
} // release foo lock
...



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized(obj) {…} Block Example

/*
Demonstrates using individual lock objects with the
synchronized(lock) {...} form instead of synchronizing methods --
allows finer grain in the locking.
*/
class MultiSynch {

// one lock for the fruits
private int apple, bannana;
private Object fruitLock;

// one lock for the nums
private int[] nums;
private int numLen;
private Object numLock;



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized(obj) {…} Block Example

public MultiSynch() {
apple = 0;
bannana = 0;
// allocate an object just to use it as a lock
// (could use a string or some other object just as well)
fruitLock = new Object();

nums = new int[100];
numLen = 0;
numLock = new Object();

}

public void addFruit() {
synchronized(fruitLock) {

apple++;
bannana++;

}
}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized(obj) {…} Block Example
public int getFruit() {

synchronized(fruitLock) {
return(apple+bannana);

}
}
public void pushNum(int num) {

synchronized(numLock) {
nums[numLen] = num;
numLen++;

}
}
// Suppose we pop and return num, but if the num is negative return
// its absolute value -- demonstrates holding the lock for the minimum time.
public int popNum() {

int result;
synchronized(numLock) {

result = nums[numLen-1];
numLen--;

}
// do computation not holding the lock if possible
if (result<0) result = -1 * result;
return(result);

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Synchronized(obj) {…} Block Example

public void both() {
synchronized(fruitLock) {

synchronized(numLock) {
// some scary operation that uses both fruit and nums
// note: acquire locks in the same order everwhere to avoid
// deadlock.
}

}
}

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Misc Thread Methods

• Thread.currentThread()
– Static method
– Returns a pointer to the Thread object for the current 

running thread
• Warning!

– If the receiver is a Thread subclass, it can give the 
false impression that the above (and following 
methods) work on the receiver!

– Static methods have not relationship with the receiver
– They always affect the running thread



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Thread.sleep(), Thread.yield() 

• Thread.sleep(milliseconds)
– Blocks the current thread for approximately the given 

number of milliseconds
• May thrown an InterruptedException if the sleeping thread is 

interrupted

• Thread.yield()
– Voluntarily give up the CPU so that another thread 

may run
• A hint to the VM, not guaranteed
• Not as useful on the pre-emptive multi-tasking OS

– Useful for things like Palm or phone

• Preferred syntax is Thread.sleep() or 
Thread.yield() to emphasize static nature



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Thread Priorities

• getPriority() and setPriority() on Thread 
objects
– Used to optimize behavior

• Not to safeguard critical sections
– Some VMs ignore priorities

• Improvements in hardware and OS may 
sometimes do a better job of scheduling threads 
than the programmer!



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

getName()

• Returns the String name of the Thread
– Useful when debugging and printing out the 

name of the thread
– Thread-1, Thread-2 etc.

• Thread class constructor takes a string 
argument which sets the name of the 
thread!



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Thread Interruption

• interrupt()
– Signal a thread object that it should stop running
– Asynchronous notification

• Does not stop the thread right away
• Sets an “interrupted” boolean to true

– Thread must check and do appropriate thing
• isInterrupted()

– Checks to see if a interrupt has been requested
– Idiom – check isInterrupted in a loop

• When interrupted, should exit leaving object in a clean state



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Stop() -- deprecated

• stop()
– Performs a synchronous stop of the thread
– Usually impossible to ensure that the object is 

left in a consistent state when using stop
– Deprecated in favor or using interrupt() and 

doing a graceful exit



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Interruption() example

class StopWorker extends Thread {
public void run() {

long sum = 0;
for (int i=0; i<5000000; i++) {

sum = sum + i; // do some work
// every n iterators... check isInterrupted()
if (i%100000 == 0) {

if (isInterrupted()) {
// clean up, exit when interrupted
// (getName() returns a default name for each thread)
System.out.println(getName() + " interrupted");
return;

}
System.out.println(getName() + " " + i);
Thread.yield();

}
}

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Interruption() example

public static void main(String[] args) {
StopWorker a = new StopWorker();
StopWorker b = new StopWorker();

System.out.println("Starting...");
a.start();
b.start();
try {

Thread.sleep(100); // sleep a little, so they make some progress
} catch (InterruptedException ignored) {}

a.interrupt();
b.interrupt();
System.out.println("Interruption sent");
try {

a.join();
b.join();

} catch (Exception ignored) {}
System.out.println("All done");

}



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Interruption() example output

• /*
• Starting...
• Thread-0 0
• Thread-1 0
• Thread-1 100000
• Thread-0 100000
• Thread-1 200000
• ...
• Thread-0 900000
• Interruption sent
• Thread-0 interrupted
• Thread-1 interrupted
• All done
• */



Thursday, July 17th, 2003 Copyright © 2003, Manu Kumar

Summary

• Today
– Review Introduction to Threading

• Java threads
– Simple Thread Example

– Threading 2
• Race Conditions
• Locking
• Synchronized Methods
• Thread Interruption

• Assigned Work Reminder
– HW 2: Java Draw

• Due before midnight on Wednesday, July 23rd, 2003


	CS193J: Programming in JavaSummer Quarter 2003Lecture 9Threading, Synchronization, Interruption
	Handouts
	Roadmap
	Coming up…
	Recap
	Today
	Threads
	Advantages of threads…
	Java Threads
	Current Running Thread
	Java Thread class
	Creating Threads in Java
	Why two approaches?
	Simple Thread Example
	Simple Thread Example
	Simple Thread Example Output
	Threading 2 (Handout #20)
	Critical Section
	Race Condition Example
	Reader/Writer Conflict
	Writer/Writer Conflict
	Heisenbugs
	Java Locks
	Object Lock and Synchronized keyword
	Receiver Lock
	Sychronized Method Picture
	Synchronized Method Example
	Synchronized Method Example
	Synchronized Method Example
	Synchronized Method Example
	Synchronized Method Example
	Locks in Java
	Synchronization Problems
	Unsynchronized Method Example
	Transaction Semantics
	Split Transaction
	Split Transaction Problem
	Split Transaction
	Split-Transaction Vector
	Get In and Get Out
	Get In and Get Out Example
	Synchronized(obj) {…} Block
	Synchronized(obj) {…} syntax
	Synchronized(obj) {…} Block Example
	Synchronized(obj) {…} Block Example
	Synchronized(obj) {…} Block Example
	Synchronized(obj) {…} Block Example
	Misc Thread Methods
	Thread.sleep(), Thread.yield()
	Thread Priorities
	getName()
	Thread Interruption
	Stop() -- deprecated
	Interruption() example
	Interruption() example
	Interruption() example output
	Summary

