
1

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Summer Quarter 2003

Lecture 10
Thread Interruption, Cooperation (wait/notify),

Swing Thread, Threading conclusions

Manu Kumar
sneaker@stanford.edu

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 1 Handout for today!
– #21: Threading 3
– #22: HW3a: ThreadBank
– #23: HW3b: LinkTester

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Homework #2 feedback

• What did you think?
– SCPD students are again encouraged to

email their comments to me at
sneaker@stanford.edu

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last Time
– Review Introduction to Threading

• Java threads
– Simple Thread Example

– Threading 2
• Race Conditions

– Reader/Writer Conflict
– Writer/Writer Conflict

• Locking
• Synchronized Method

– Synchronized method example

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Today

• Homework #3 overview
– ThreadBank

• demo
– LinkTester

• demo

• Thread Interruption
• Cooperation

– Wait/notify
• Swing Thread
• Threading conclusions

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

HW3a: ThreadBank

• Small assignment
– Intended to cover mostly material covered in

lecture this week
• Java Threads
• Synchronization
• Cooperation (today)

• Recommendation
– Finish this assignment this week!

• It is small, the material if fresh in your mind
• Part 3b is more involved…

2

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

HW3b: LinkTester

• Based on the following material
– Threading
– Basic Networking

• So basic that we will not cover this in lecture in
detail – just a simple example

• See handout and refer to API classes
– Model-View-Controller
– Swing Tables
– Swing Thread

• Demo of HW3b…

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Thread Interruption

• interrupt()
– Signal a thread object that it should stop running
– Asynchronous notification

• Does not stop the thread right away
• Sets an “interrupted” boolean to true

– Thread must check and do appropriate thing
• isInterrupted()

– Checks to see if a interrupt has been requested
– Idiom – check isInterrupted() in a loop

• When interrupted, should exit leaving object in a clean state

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Stop() -- deprecated

• stop()
– Performs a synchronous stop of the thread
– Usually impossible to ensure that the object is

left in a consistent state when using stop
– Deprecated in favor or using interrupt() and

doing a graceful exit

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Interruption() example

class StopWorker extends Thread {
public void run() {

long sum = 0;
for (int i=0; i<5000000; i++) {

sum = sum + i; // do some work
// every n iterators... check isInterrupted()
if (i%100000 == 0) {

if (isInterrupted()) {
// clean up, exit when interrupted
// (getName() returns a default name for each thread)
System.out.println(getName() + " interrupted");
return;

}
System.out.println(getName() + " " + i);
Thread.yield();

}
}

}

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Interruption() example

public static void main(String[] args) {
StopWorker a = new StopWorker();
StopWorker b = new StopWorker();

System.out.println("Starting...");
a.start();
b.start();
try {

Thread.sleep(100); // sleep a little, so they make some progress
} catch (InterruptedException ignored) {}

a.interrupt();
b.interrupt();
System.out.println("Interruption sent");
try {

a.join();
b.join();

} catch (Exception ignored) {}
System.out.println("All done");

}

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Interruption() example output

• /*
• Starting...
• Thread-0 0
• Thread-1 0
• Thread-1 100000
• Thread-0 100000
• Thread-1 200000
• ...
• Thread-0 900000
• Interruption sent
• Thread-0 interrupted
• Thread-1 interrupted
• All done
• */

3

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Threading 3 (Handout #21)

• Threading Challenges
– Synchronization

• Preventing threads from stepping on each other
when dealing with shared memory

• Done using synchronized methods and
synchronized(obj) {…} constructs

– Cooperation/Coordination
• Making on thread wait for the other
• Signaling between threads
• Done using join(), wait() and notify() constructs

– join() we have already seen.

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Checking conditions under a lock

• Suppose we want to execute the
statement
– if (len >0) len ++

• Problems:
– Multiple threads
– The statement is not atomic

• The value of len can change after we read it and
before we set it!

• Solution
– Lock the variable before doing “test and set”

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

wait() and notify()

• Every Java object has a wait/notify queue
– Similar to the way every Java object has a lock
– Used to get threads to cooperate with or signal each

other
• The queue is like the len variable in the previous

example!
– i.e. we MUST have a lock on the object before we can

touch it’s queue
– Implies that wait() and notify can only be called inside

a synchronized method or a synchronized(obj) {…}
block

– Must synchronize on the object whose queue is being
used!

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

wait()

• obj.wait();
– Send to any object
– Calling thread waits (blocks) on the object’s queue

• Efficient blocking

– Must first have that objects lock!
– Waiting thread releases that objects lock

• Does not release any other locks it holds!

– Sending an interrupt() to the waiting thread will result
in popping out of its wait

• Actually this will result in a InterruptedException which would
need to be caught

• We will see this in an example later

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

notify()

• obj.notify(); obj.notifyAll();
– Send to any object
– Notifies a waiter (thread) on that objects

queue if there is one
– Sender must have the objects lock
– A random waiting thread will get woken up

from its wait()
• Not necessarily FIFO
• Not right away

– Waiter will re-acquire the lock before
resuming operation

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Dropped notify() and notifyAll()

• Dropped notify()
– If there are no waiting threads on the objects queue,

the notify() does nothing
– wait()/notify() do not count up and down

• That requires a semaphone – see handout

• notifyAll()
– Notifies all waiting threads on the queue
– Tricky to know when to call notify()

• Most common approach is to always call notifyAll()
• Only one thread will be able to acquire the lock
• Not too expensive

4

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Monitor Exception

• Java.lang.IllegalMonitorStateException:
current thread not owner
– This is the exception thrown if a thread tries a

wait/notify on a object without first holding its
lock!

– You will get these while writing your code!
• Make sure you are synchronizing on the correct

object before calling wait or notify!

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

While (cond) wait() idiom

• When the waiting thread is woken up from the
wait it holds the lock
– But the condition it was waiting for may not be true

any more!
– It may have become false again in between when the

notify happened and when the wait/return happened
– Necessary to check the condition again before

proceeding further
• Idiom

try {
while (<condition>) wait();

} catch (InterruptedException e) {}

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Wait/notify example

• Producer/Consumer problem with wait/notify
– "len" represents the number of elements in some

imaginary array
– add() adds an element to the end of the array. Add()

never blocks
– We assume there's enough space in the array.
– remove() removes an element, but can only finish if

there is an element to be removed.
– If there is no element, remove() waits for one to be

available.

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Wait/notify example

• Strategy:
– The AddRemove object is the common object

between the threads
• they use its lock and its wait/notify queue.

– add() does a notify() when it adds an element
– remove() does a wait() if there are no

elements
– Eventually, an add() thread will put an

element in and do a notify()
– Each adder adds 10 times, and each remover

removes 10 times, so it balances in the end.

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Wait/Notify example code

• Code walk through
– In emacs…

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Dropped notify() problem…

• Notify() does not count the number of
notifies!
– It is instantaneous

• If there are waiters waiting they will be signaled
• If a waiter comes after the notify, it is not signaled

• wait/notify() is simpler than a semaphore
– Semaphores count

• Classic CS locking construct
• Possible to build semaphore using wait/notify

5

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

DroppedNotify Example

• Code walkthrough
– In emacs…

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Swing/GUI Threading

• Problem: Swing vs. Threads
– Modifying the GUI state while it is being

drawn
• Typical reader/writer conflict problem

– Example
• paintComponent() while another thread changes

the component geometry
• Send mouseMoved() notification to an object, but

another thread deletes the object!

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Solution: Swing Thread

• Swing Thread: a.k.a One Big Lock!
– One official designated “Swing thread”
– Does all Swing/GUI notifications using the Swing

thread, one at a time
• paintComponent() – always on Swing Thread
• All notifications: action events, mouse events – sent on the

Swing Thread
– System keeps a queue of “Swing jobs”

• When the Swing Thread is done with its current job it moves
on to the next one

– Only the Swing Thread is allowed to edit the state of
the GUI

• Since the Swing thread is the only one allowed to touch the
Swing state there is in effect a big lock over all the Swing
State

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Programmer Rules

• On the swing thread – edit ok
– Allowed to edit the Swing state when you are on the Swing Thread

• Container.add(), setPreferredSize(), setLayout()
• Don’t hog the Swing Thread

– Do not to time-consuming operations on the Swing Thread
• If you hold the Swing Thread, no Swing/GUI processing will happen till you

release it!
– Fork off a worker thread to do a time-consuming operation

• Not on the Swing Thread – no edit
– A thread which is not the swing thread may not send messages that edit

the Swing state
– Use invokeLater() to run code on the swing thread
– Repaint() is an exception – since it only schedules a call to

paintComponent() which is called by the Swing Thread
– Another exception is modifying state before the component has been

made visible
• For example in a constructor

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Swing Thread: Results

• In your notifications (paintComponent(),
actionPerformed()) you are on the Swing
Thread
– Feel free to send Swing messages

• There is only one Swing Thread
– When you have it, no other Swing activity is

happening
• Do not hog the Swing Thread

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

SwingUtilities

• Built in utility method to allow you to “post”
some code to the Swing Thread to run
later
– Uses Runnable interface

• public void run()
– SwingUtilities.invokeLater(Runnable)

• Queue up the given runnable
• Will execute when the Swing Thread gets to it

– SwingUtilities.invokeAndWait(Runnable)
• Same as above, but also block current thread till

the runnable has completed

6

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

SwingUtilities Client Example

class MyFrame extends JFrame {
private JLabel label;
// Typical GUI code down here creates and starts the worker
public MyFrame() {

// standard Frame ctor stuff, create buttons...
button.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
Worker worker = new Worker();
worker.start();

}
});
...

}

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

SwingUtilities Client Example

class Worker extends Thread {
public void run() {

// The worker does some big computation
final String answer = <something>;
// We want to call setText() to send the answer to the GUI.
// We must go through SwingUtilities.invokeLater()
SwingUtilities.invokeLater(

new Runnable() { // create a runnable on the fly
public void run() {

label.setText(answer);
}

}
);

}
}

}

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

SwingThread Demo

• Demo and code
walkthrough
– In emacs…

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Threading Conclusions

• Java uses an OOP Concurrency style
– Objects store state
– Getters and setters are synchronized
– Intuitive extension to how threading is handled

• Not just a translation from C/C++
• Compile Time “Structured” style

– Lock/unlock structure is specified at compile time
• synchronized(obj) {…}
• Impossible to write code where lock/unlock don’t balance

– Much better than lock() and unlock() constructs in other
languages

• Java uses “monitor” style locking
– Not as flexible, but easier and less error prone

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

When to use Threading?

• Hardware
– To take advantage of increasingly parallel

hardware
• GUI

– To keep the GUI responsive
• Networking

– Use thread to support multiple connections
– Speed up by pipelining slow operations

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

In general…

• Single Threaded is easier!
– There are cases when this is the best use of

your time
• Design for concurrency

– By default, do not put much effort in to making
your class support concurrency

• Should only be deliberately added when it makes
sense

• It is not trivial to support concurrency
– Performance tradeoff
– Complexity tradeoff

7

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Typical Good Design – Checkin/Checkout

shared
checkout
stage

worker
thread

worker
thread

worker
thread

shared
checkin
stage

Thursday, July 24th, 2003 Copyright © 2003, Manu Kumar

Summary

• Today
– Thread Interruption
– Cooperation

• Wait/notify
• Swing/GUI Threading

– SwingThread Demo

– Threading conclusions
• Assigned Work Reminder

– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003
• Do HW3a this week!!

	CS193J: Programming in JavaSummer Quarter 2003Lecture 10Thread Interruption, Cooperation (wait/notify), Swing Thread, Thre
	Handouts
	Homework #2 feedback
	Recap
	Today
	HW3a: ThreadBank
	HW3b: LinkTester
	Thread Interruption
	Stop() -- deprecated
	Interruption() example
	Interruption() example
	Interruption() example output
	Threading 3 (Handout #21)
	Checking conditions under a lock
	wait() and notify()
	wait()
	notify()
	Dropped notify() and notifyAll()
	Monitor Exception
	While (cond) wait() idiom
	Wait/notify example
	Wait/notify example
	Wait/Notify example code
	Dropped notify() problem…
	DroppedNotify Example
	Swing/GUI Threading
	Solution: Swing Thread
	Programmer Rules
	Swing Thread: Results
	SwingUtilities
	SwingUtilities Client Example
	SwingUtilities Client Example
	SwingThread Demo
	Threading Conclusions
	When to use Threading?
	In general…
	Typical Good Design – Checkin/Checkout
	Summary

