
1

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Winter Quarter 2003

Lecture 11
MVC/JTable, Exceptions and Files

Manu Kumar
sneaker@stanford.edu

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 3 Handout for today!
– #24: MVC / Tables
– #25: Exceptions
– #26: Files and Streams

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last Time
– Thread Interruption
– Cooperation

• Wait/notify
• Swing/GUI Threading

– SwingThread Demo

– Threading conclusions
• Assigned Work Reminder

– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003
• Done with HW3a??

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Today

• Today:
– More HW3b intuition…
– MVC

• Model View Controller paradigm
• JTable

– Exceptions
– Files and Streams

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Homework #3 Part b intuition

• How many of you have not used
Napster/Kazaa/Bearshare! ☺
– The interface HW3 presents for checking links is reminiscent of

how P2P filesharing clients download files.

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

MVC

• MVC paradigm
– Model

• Data storage, no presentation elements
– View

• No data storage, presentation elements
– Controller

• Glue to tie the Model and the view together

• Motivation
– Provides for a good way to partition work and create a

modular design
– Very flexible paradigm for providing multiple ways to

look at the same information

2

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Rudimentary MVC diagram

Model`

View1 View2 View3

Controller

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Sun’s MVC Pattern Diagram

Stolen from a presentation by DChen @ Sun

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Model

• aka Data Model
– Storage, not presentation
– Knows data, not pixels
– Support data model operations

• Cut/copy/paste, File Saving, undo, networked data
– All operations on the model
– work out logic for file save or undo, without worrying

about pixels

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

View / Controller

• View
– Presentation layer

• Gets all the data from the model and draws or otherwise
renders for the user

• Controller
– The logic that glues things together
– Manage the relationship between the model and the

view
• Most data changes are initiated by user events. Translated

into messages to the model
• The view needs to hear about changes. This is done in Java

using Listeners

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Model Role

• Respond to getter methods to provide data
• Respond to setters to change data
• Manage a list of listeners

– When receiving a setData() to change data,
notify the listeners of the change

• fireXXXChanged
• Change notifications express the different changes

possible on the model
• Iterate through the listeners and notify each about

the change

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

View/Controller Role

• Has a pointer to the data model
• Doesn’t store any data
• Send getData() to model to get the data as

needed
• User edit operations (clicking, typing) in the UI

map to setData() messages sent to the model
• Register as a listener to the model and respond

to change notifications
– On change notification, consider doing a getData() to

get the new values to update the presentation/pixels

3

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Tables in Swing

• Tables are one of the more involved UI
elements in Swing
– Basic functionality however it easy
– Learn by pattern matching!

• Resources:
– Handout has lots of sample code

• Source for the code in the handout is available in
electronic form on the course website

– Sun’s Java Tutorial on How to Use Tables
• http://java.sun.com/docs/books/tutorial/uiswing/co

mponents/table.html

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Tables in Swing

• Use MVC pattern!
– Model: TableModel
– View: JTable
– Controller: UI elements and listener bindings

• JTable
– Relies on a TableModel for storage
– Has lots of features to display tabular data

• TableModel Interface
– getValueAt(), setValueAt(), getRowCount(),

getColumnCount() etc.
• TableModelListener Interface

– tableChanged(TableModelEvent e)

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

AbstractTableModel

• Implements common functionality for
TableModel Interface
– But it is abstract, so you must extend it

• getRowCount(), getColumnCount(), getValueAt()
– Helper methods for things not directly related

to storage
• addTableModelListener(), fire___Changed()

• DefaultTableModel
– Extends AbstractModel, but uses a Vector

implementation

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

BasicTableModel

• Provided in the course handout
– Uses ArrayList implementation
– getValueAt() to access data
– setValueAt() to change data

• Notifies of changes by sending fireTable____() methods
– Handles listeners

• This is what you should follow!
– Base your code for HW3b on the BasicTableModel

code provided in the handout!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

TableFrame Example

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

TableFrame Example

• First lets look at the Client side
– i.e. how we use the BasicTableModel to

implement the TableFrame example
– Code walk through in emacs…

4

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

TableFrame Example

• Next lets look at the guts of the
BasicTableModel…
– Code walkthrough in emacs…

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Table Tips!

• Put the JTable in a JScrollPane
– This automatically deals with handling space for the

header and does the right things!
• To change column widths

TableColumn column = null;
for (int i = 0; i < 5; i++) {

column = table.getColumnModel().getColumn(i);
if (i == 2) {

column.setPreferredWidth(100); //second column is bigger
} else {
column.setPreferredWidth(50);
}

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

MVC Summary

• MVC is used in Swing in many places
– Model
– View
– Controller

• Advantage of MVC
– 2 small problems vs. 1 big problem

• Provides a natural decomposition pattern
• Can solve GUI problems in the GUI domain, the

storage etc. is all separate
– Example: don’t have to worry about file saving when

implementing scrolling and vice versa

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

MVC examples

• Networked Multiple Views
– Model on a central server, different views on

clients
• Wrapping Databases
• Web Applications

– Three-Tier Architecture
• Application Server
• Servlets/JSPs

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exceptions

• You’ve seen these already!
– So you already have some intuition about

these
• Exceptions

– Are for handling errors
– Example:

• ArrayIndexOutOfBoundsException
• NullPointerExeption
• CloneNotSupportedException

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Error-Handling

• Programming has two main tasks
– Do the main computation or task at hand
– Handle exceptional (rare) failure conditions that may

arise
• Bulletproofing

– Term used to make sure your program can handle all
kinds of error conditions

• Warning
– Since error handling code is not executed very often,

it is likely that it will have lots of errors in it!

5

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Traditional Approach to Error Handling

• Main computation and error handling code
are mixed together
int error = foo(a, &b)
If (error = 0) { ….}

• Problems
– Spaghetti code – less readable
– Error codes, values have to be manually

passed back to calling methods so that the
top level caller can do something graceful

– Compiler does not provide any support for
error handling

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

The Java Way: Exceptions

• Formalize and separate error handling
from main code in a structured way
– Compiler is aware of these “exceptions”
– Easier to read since it is possible to look at

main code, and look at error cases
– Possible to pass errors gracefully up the

calling hierarchy to be handled at the
appropriate level

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exception Classes

• Throwable
– Superclass for all exceptions

• Two main types of exceptions
– Exception

• This is something the caller/programmer should know about
and handle

• Must be declared in a throws clause

– RuntimeException
• Subclass of exception
• Does not need to be declared in a throws clause
• Usually reserved for things which the caller cannot do

anything and therefore also usually fatal.

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exception Subclasses

• Exceptions are organized in a hierarchy
– Subclasses are most specific
– Higher level exceptions are less specific

• You can create your own subclasses of
exceptions which are application specific
– Rule of thumb: if your client code will need to

distinguish a particular error and do
something special, create a new exception
subclass, otherwise, just use existing classes.

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Methods with Exceptions

• Exception throw
– throw can be used to signal an exception at

runtime
• Method throws

– When a method does something that can
result in an error, it should declare throws in
the method declaration

public void fileRead(String f) throws IOException {
….
}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

“Handling” Exceptions

• Three possible options
– Do nothing approach

• Always a bad idea! Do not use this!!
– Pass-the-buck-approach

• Declare the exception in a throws
• This passes the exception along to the caller to handle

– Do-Something-approach
• Use try-catch block to test if an exception can happen and

then so something useful

• Which one to use:
– Depends on the application!

6

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

try / catch

• Idea:
– “try” to do something
– If it fails “catch” the exception
– Do something appropriate to deal with the error

• Note:
– A try may have multiple catches!

• Depending upon the different types of exceptions that can be
thrown by all the statements inside a try block

– Exceptions are tested in the same order as the catch
blocks

• Important when dealing with exceptions that have a
superclass-subclass relationship

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

try / catch example

public void fileRead(String fname) { // NOTE no throws

try {
// this is the standard way to read a text file...
FileReader reader = new FileReader(new File(fname));
BufferedReader in = new BufferedReader(reader);

String line;
while ((line = in.readLine()) != null) {

...
// readLine() etc. can fail in various ways with
// an IOException }

}
// Control jumps to the catch clause on an exception
catch (IOException e) {

// a simple handling strategy -- see below for better strategies
e.printStackTrace();

}
}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

printStackTrace() is your friend!

• When dealing with exceptions
• Especially when debugging
• printStackTrace() will:

– Show you the full calling history
– With line numbers

• Note:
– Bad idea to eat an exception silently!
– Either printStackTrace() or pass it along to be

handled at a different level

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exception Patterns: #1

• Inner throws, Outer handler

Initiating
method intermediate

method low-level database
access method

low-level file
system access method

“throws” clauses --
propagate exception
back to initiating
method

try/catch to handle
the exception

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exception Patterns: #1

• Swing Thread Example
– Thread should never die even when there is an

exception

loop processing Swing GUI tasks {
Runnable task = nextTask();
try {

task.run();
}
catch (Exception e) {

e.printStackTrace();
}

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exception Patterns: #2

• try/catch at every level
– Usually a bad sign
– Lower level methods should just identify the

problem and pass back the information that it
happened

– More complex try/catch code should be
concentrated at one place

• A try/catch may be used at the lower levels of code
if the method deals with the error on it’s own and
the higher layers don’t need to know about it

7

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exception Patterns: #3

• Multiple catch clauses
– Possible to have multiple catch clauses for a

single try statement
• Essentially checking for different types of

exceptions that may happen
– Evaluated in the order of the code

• Bear in mind the Exception hierarchy when writing
multiple catch clauses!

• If you catch Exception first and then IOException,
the IOException will never be caught!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exception Patterns: #3

• Multiple catch clauses example

private void loadXML(File file) {
try {

// file opening and XML parsing code
}
catch (SAXException e) {

System.err.println("XML parse err:" + e.getMessage());
}
catch (IOException e) {

System.err.println("IO err:" + e.getMessage());
}

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exception Patterns: #4

• Clean try/catch
– Write try/catch statements so that the objects

are always left in a consistent state
• On graceful exit
• On non-graceful exit

– Maintain transaction semantics!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Wrong -- unclean

class HTTPTester {
private String[] results;
private int resultCount;
// Attempts a connection to the given url and adds the result to the array.
// Suppose that url responds to a connect() message
public void test(URL url) {

try {
url.connect(); // may throw
resultCount++;
results[resultCount-1] = url.getData(); // may throw

}
catch (ConnectException e) {

// log the exception
}

}
...

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Correct – fail first
class HTTPTester {

private String[] results;
private int resultCount;
// Attempts a connection to the given url and adds the result to the array.
// Suppose that url responds to a connect() message
public void test(URL url) {

try {
// do all the unsafe operations first, store results on the stack
// not into ivars
url.connect(); // may throw
String result = url.getData(); // may throw
// if we get here no exceptions happened, so store into the ivars
resultCount++;
results[resultCount-1] = result;

}
catch (ConnectException e) {

// log the exception
}

}
…

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Correct – clean up
class HTTPTester {

private String[] results;
private int resultCount;
// Attempts a connection to the given url and adds the result to the array.
public void test(URL url) {

int oldCount = resultCount;
try {

url.connect(); // may throw
resultCount++;
results[resultCount-1] = url.getData(); // may throw

}
catch (ConnectException e) {

// log the exception
// specifically detect and undo the partial operation
if (resultCount > oldCount) {

results[resultCount-1] = null;
resultCount = oldCount;

}
}

}
}

8

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

finally clause

• Try-catch-finally
– Finally section includes code that is always

executed before the block exits
• Executes in both graceful and ungraceful cases

– Usually used for
• Doing cleanup

– Closing streams and handles

– A return statement in the try clause will
execute the finally clause before returning

• This is stylistically not good since it is confusing to
the reader

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Finally example

public void processFile() {
processing = true;
try {

...
}
catch (IOException e) {

e.printStackTrace();
}
finally {

processing = false;
}

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Files and Streams

• File
– Represents a file or directory
– Java abstracts away the ugliness of dealing

with files quite nicely
• Streams

– Way to deal with input and output
– A useful abstraction…

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Streams!??

• Water analogy
– Think of streams as pipes for water
– Do you know whether the water that comes out of

your tap is coming from a) the ocean b) some river c)
a water tank d) a water buffalo?

• Idea:
– You abstract away what the stream is connected to

and perform all your I/O operations on the stream
– The stream may be connected to a file on a floppy, a

file on a hard disk, a network connection or may even
just be in memory!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Hierarchy of Streams

• Java provides a hierarchy of streams
– Think of this as different “filters” you can add on to

your water pipe
• Some may compress/decompress data
• Some may provide buffers

• Common Use Scenario
– Streams are used by layering them together to form

the type of “pipe” we eventually want

file in
filesystem

FileInputStreamBufferedReader

client code read() requests

data

GZIPInputStream

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Types of Streams

• InputStream / OutputStream
– Base class streams with few features
– read() and write()

• FileInputStream / FileOutputStream
– Specifically for connecting to files

• ByteArrayInputStream / ByteArrayOutputStream
– Use an in-memory array of bytes for storage!

• BufferedInputStream / BufferedOutputStream
– Improve performance by adding buffers
– Should almost always use buffers

• BufferedReader / BufferedWriter
– Convert bytes to unicode Char and String data
– Probably most useful for what we need

9

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Streams and Threads

• When a thread sends a read() to a stream,
if the data is not ready, the thread blocks
in the call to read(). When the data is
there, the thread unblocks and the call to
read() returns

• The reading/writing code does not need to
do anything special

• Read 10 things at once – create 10
threads!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Reading Example

public void readLines(String fname) {
try {

// Build a reader on the fname, (also works with File object)
BufferedReader in = new BufferedReader(new

FileReader(fname));
String line;
while ((line = in.readLine()) != null) {

// do something with 'line'
System.out.println(line);

}

in.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Writing Example

public void writeLines(String fname) {
try {

// Build a writer on the fname (also works on File objects)
BufferedWriter out = new BufferedWriter(new FileWriter(fname));

// Send out.print(), out.println() to write chars
for (int i=0; i<data.size(); i++) {

out.println(... ith data string ...);
}

out.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

HTTP

• Java has build-in and very elegant support
for HTTP

• Code on the handout is what you will need
for HW #3 Part b!

• URL
– Uniform Resource Location

• http://cs193j.stanford.edu

• URLConnection
– To open a network connection to a URL and

be able to get a stream from it to read data!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

HTTP Example
• public static void dumpURL(String urlString) {
• try {
• URL url = new URL(urlString);
• URLConnection conn = url.openConnection();
• InputStream stream = conn.getInputStream();
• BufferedReader in = new BufferedReader(new

InputStreamReader(stream));
•
• String line;
• while ((line = in.readLine()) != null) {
• System.out.println(line);
• }
• in.close();
• }
• catch (MalformedURLException e) {
• e.printStackTrace();
• }
• catch (IOException e) {
• e.printStackTrace();
• }
• }

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Summary!

• Today
– More HW3b intuition
– MVC

• Model View Controller paradigm
• JTable

– Exceptions
– Files and Streams

• Assigned Work Reminder
– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003

	CS193J: Programming in JavaWinter Quarter 2003Lecture 11MVC/JTable, Exceptions and Files
	Handouts
	Recap
	Today
	Homework #3 Part b intuition
	MVC
	Rudimentary MVC diagram
	Sun’s MVC Pattern Diagram
	Model
	View / Controller
	Model Role
	View/Controller Role
	Tables in Swing
	Tables in Swing
	AbstractTableModel
	BasicTableModel
	TableFrame Example
	TableFrame Example
	TableFrame Example
	Table Tips!
	MVC Summary
	MVC examples
	Exceptions
	Error-Handling
	Traditional Approach to Error Handling
	The Java Way: Exceptions
	Exception Classes
	Exception Subclasses
	Methods with Exceptions
	“Handling” Exceptions
	try / catch
	try / catch example
	printStackTrace() is your friend!
	Exception Patterns: #1
	Exception Patterns: #1
	Exception Patterns: #2
	Exception Patterns: #3
	Exception Patterns: #3
	Exception Patterns: #4
	Wrong -- unclean
	Correct – fail first
	Correct – clean up
	finally clause
	Finally example
	Files and Streams
	Streams!??
	Hierarchy of Streams
	Types of Streams
	Streams and Threads
	Reading Example
	Writing Example
	HTTP
	HTTP Example
	Summary!

