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Handouts

• 3 Handout for today!
– #24: MVC / Tables
– #25: Exceptions
– #26: Files and Streams
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Recap

• Last Time
– Thread Interruption
– Cooperation

• Wait/notify
• Swing/GUI Threading

– SwingThread Demo

– Threading conclusions
• Assigned Work Reminder

– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003
• Done with HW3a??
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Today

• Today:
– More HW3b intuition…
– MVC

• Model View Controller paradigm
• JTable

– Exceptions
– Files and Streams
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Homework #3 Part b intuition

• How many of you have not used 
Napster/Kazaa/Bearshare! ☺
– The interface HW3 presents for checking links is reminiscent of 

how P2P filesharing clients download files.
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MVC

• MVC paradigm
– Model

• Data storage, no presentation elements
– View

• No data storage, presentation elements
– Controller

• Glue to tie the Model and the view together

• Motivation
– Provides for a good way to partition work and create a 

modular design
– Very flexible paradigm for providing multiple ways to 

look at the same information
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Rudimentary MVC diagram

Model`

View1 View2 View3

Controller
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Sun’s MVC Pattern Diagram

Stolen from a presentation by DChen @ Sun
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Model

• aka Data Model
– Storage, not presentation
– Knows data, not pixels
– Support data model operations

• Cut/copy/paste, File Saving, undo, networked data
– All operations on the model
– work out logic for file save or undo, without worrying 

about pixels
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View / Controller

• View
– Presentation layer

• Gets all the data from the model and draws or otherwise 
renders for the user

• Controller
– The logic that glues things together
– Manage the relationship between the model and the 

view
• Most data changes are initiated by user events. Translated 

into messages to the model
• The view needs to hear about changes. This is done in Java 

using Listeners
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Model Role

• Respond to getter methods to provide data
• Respond to setters to change data
• Manage a list of listeners

– When receiving a setData() to change data, 
notify the listeners of the change

• fireXXXChanged
• Change notifications express the different changes 

possible on the model
• Iterate through the listeners and notify each about 

the change
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View/Controller Role

• Has a pointer to the data model
• Doesn’t store any data
• Send getData() to model to get the data as 

needed
• User edit operations (clicking, typing) in the UI 

map to setData() messages sent to the model
• Register as a listener to the model and respond 

to change notifications
– On change notification, consider doing a getData() to 

get the new values to update the presentation/pixels
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Tables in Swing

• Tables are one of the more involved UI 
elements in Swing
– Basic functionality however it easy
– Learn by pattern matching!

• Resources:
– Handout has lots of sample code

• Source for the code in the handout is available in 
electronic form on the course website

– Sun’s Java Tutorial on How to Use Tables
• http://java.sun.com/docs/books/tutorial/uiswing/co

mponents/table.html
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Tables in Swing

• Use MVC pattern!
– Model: TableModel
– View: JTable
– Controller: UI elements and listener bindings

• JTable
– Relies on a TableModel for storage
– Has lots of features to display tabular data

• TableModel Interface
– getValueAt(), setValueAt(), getRowCount(), 

getColumnCount() etc.
• TableModelListener Interface

– tableChanged(TableModelEvent e)
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AbstractTableModel

• Implements common functionality for 
TableModel Interface
– But it is abstract, so you must extend it

• getRowCount(), getColumnCount(), getValueAt()
– Helper methods for things not directly related 

to storage
• addTableModelListener(), fire___Changed()

• DefaultTableModel
– Extends AbstractModel, but uses a Vector 

implementation
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BasicTableModel

• Provided in the course handout
– Uses ArrayList implementation
– getValueAt() to access data
– setValueAt() to change data

• Notifies of changes by sending fireTable____() methods
– Handles listeners

• This is what you should follow!
– Base your code for HW3b on the BasicTableModel

code provided in the handout!
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TableFrame Example
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TableFrame Example

• First lets look at the Client side
– i.e. how we use the BasicTableModel to 

implement the TableFrame example
– Code walk through in emacs…
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TableFrame Example

• Next lets look at the guts of the 
BasicTableModel…
– Code walkthrough in emacs…
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Table Tips!

• Put the JTable in a JScrollPane
– This automatically deals with handling space for the 

header and does the right things!
• To change column widths

TableColumn column = null; 
for (int i = 0; i < 5; i++) { 

column = table.getColumnModel().getColumn(i); 
if (i == 2) { 

column.setPreferredWidth(100); //second column is bigger
} else { 
column.setPreferredWidth(50);
}

} 
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MVC Summary

• MVC is used in Swing in many places
– Model
– View
– Controller

• Advantage of MVC
– 2 small problems vs. 1 big problem

• Provides a natural decomposition pattern
• Can solve GUI problems in the GUI domain, the 

storage etc. is all separate
– Example: don’t have to worry about file saving when 

implementing scrolling and vice versa
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MVC examples

• Networked Multiple Views
– Model on a central server, different views on 

clients
• Wrapping Databases
• Web Applications

– Three-Tier Architecture
• Application Server
• Servlets/JSPs
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Exceptions

• You’ve seen these already!
– So you already have some intuition about 

these
• Exceptions

– Are for handling errors
– Example:

• ArrayIndexOutOfBoundsException
• NullPointerExeption
• CloneNotSupportedException
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Error-Handling

• Programming has two main tasks
– Do the main computation or task at hand
– Handle exceptional (rare) failure conditions that may 

arise
• Bulletproofing

– Term used to make sure your program can handle all 
kinds of error conditions

• Warning
– Since error handling code is not executed very often, 

it is likely that it will have lots of errors in it!
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Traditional Approach to Error Handling

• Main computation and error handling code 
are mixed together
int error = foo(a, &b)
If (error = 0) { ….}

• Problems
– Spaghetti code – less readable
– Error codes, values have to be manually 

passed back to calling methods so that the 
top level caller can do something graceful

– Compiler does not provide any support for 
error handling
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The Java Way: Exceptions

• Formalize and separate error handling 
from main code in a structured way
– Compiler is aware of these “exceptions”
– Easier to read since it is possible to look at 

main code, and look at error cases
– Possible to pass errors gracefully up the 

calling hierarchy to be handled at the 
appropriate level
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Exception Classes

• Throwable
– Superclass for all exceptions

• Two main types of exceptions
– Exception

• This is something the caller/programmer should know about 
and handle

• Must be declared in a throws clause

– RuntimeException
• Subclass of exception
• Does not need to be declared in a throws clause
• Usually reserved for things which the caller cannot do 

anything and therefore also usually fatal.

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Exception Subclasses

• Exceptions are organized in a hierarchy
– Subclasses are most specific
– Higher level exceptions are less specific

• You can create your own subclasses of 
exceptions which are application specific
– Rule of thumb: if your client code will need to 

distinguish a particular error and do 
something special, create a new exception 
subclass, otherwise, just use existing classes.
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Methods with Exceptions

• Exception throw
– throw can be used to signal an exception at 

runtime
• Method throws

– When a method does something that can 
result in an error, it should declare throws in 
the method declaration

public void fileRead(String f) throws IOException {
….
}
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“Handling” Exceptions

• Three possible options
– Do nothing approach

• Always a bad idea! Do not use this!!
– Pass-the-buck-approach

• Declare the exception in a throws
• This passes the exception along to the caller to handle

– Do-Something-approach
• Use try-catch block to test if an exception can happen and 

then so something useful

• Which one to use:
– Depends on the application!
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try / catch

• Idea:
– “try” to do something
– If it fails “catch” the exception
– Do something appropriate to deal with the error

• Note:
– A try may have multiple catches!

• Depending upon the different types of exceptions that can be 
thrown by all the statements inside a try block

– Exceptions are tested in the same order as the catch 
blocks

• Important when dealing with exceptions that have a 
superclass-subclass relationship
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try / catch example

public void fileRead(String fname) { // NOTE no throws

try {
// this is the standard way to read a text file...
FileReader reader = new FileReader(new File(fname));
BufferedReader in = new BufferedReader(reader);

String line;
while ((line = in.readLine()) != null) {

...
// readLine() etc. can fail in various ways with
// an IOException }

}
// Control jumps to the catch clause on an exception
catch (IOException e) {

// a simple handling strategy -- see below for better strategies
e.printStackTrace();

}
}
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printStackTrace() is your friend!

• When dealing with exceptions
• Especially when debugging
• printStackTrace() will:

– Show you the full calling history
– With line numbers

• Note:
– Bad idea to eat an exception silently!
– Either printStackTrace() or pass it along to be 

handled at a different level
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Exception Patterns: #1

• Inner throws, Outer handler

Initiating 
method intermediate 

method low-level database 
access method

low-level file 
system access method

“throws” clauses -- 
propagate exception 
back to initiating 
method

try/catch to handle 
the exception
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Exception Patterns: #1

• Swing Thread Example
– Thread should never die even when there is an 

exception

loop processing Swing GUI tasks  {
Runnable task = nextTask();
try {

task.run();
}
catch (Exception e) {

e.printStackTrace();
}

}
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Exception Patterns: #2

• try/catch at every level
– Usually a bad sign
– Lower level methods should just identify the 

problem and pass back the information that it 
happened

– More complex try/catch code should be 
concentrated at one place

• A try/catch may be used at the lower levels of code 
if the method deals with the error on it’s own and 
the higher layers don’t need to know about it
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Exception Patterns: #3

• Multiple catch clauses
– Possible to have multiple catch clauses for a 

single try statement
• Essentially checking for different types of 

exceptions that may happen
– Evaluated in the order of the code

• Bear in mind the Exception hierarchy when writing 
multiple catch clauses!

• If you catch Exception first and then IOException, 
the IOException will never be caught!
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Exception Patterns: #3

• Multiple catch clauses example

private void loadXML(File file)  {
try {

// file opening and XML parsing code
}
catch (SAXException e) {

System.err.println("XML parse err:" + e.getMessage());
}
catch (IOException e) {

System.err.println("IO err:" + e.getMessage());
}

}
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Exception Patterns: #4

• Clean try/catch
– Write try/catch statements so that the objects 

are always left in a consistent state
• On graceful exit
• On non-graceful exit

– Maintain transaction semantics!
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Wrong -- unclean

class HTTPTester {
private String[] results;
private int resultCount;
// Attempts a connection to the given url and adds the result to the array.
// Suppose that url responds to a connect() message
public void test(URL url) {

try {
url.connect(); // may throw
resultCount++;
results[resultCount-1] = url.getData(); // may throw

}
catch (ConnectException e) {

// log the exception
}

}
...

}
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Correct – fail first
class HTTPTester {

private String[] results;
private int resultCount;
// Attempts a connection to the given url and adds the result to the array.
// Suppose that url responds to a connect() message
public void test(URL url) {

try {
// do all the unsafe operations first, store results on the stack
// not into ivars
url.connect(); // may throw
String result = url.getData(); // may throw
// if we get here no exceptions happened, so store into the ivars
resultCount++;
results[resultCount-1] = result;

}
catch (ConnectException e) {

// log the exception
}

}
…

}
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Correct – clean up
class HTTPTester {

private String[] results;
private int resultCount;
// Attempts a connection to the given url and adds the result to the array.
public void test(URL url) {

int oldCount = resultCount;
try {

url.connect(); // may throw
resultCount++;
results[resultCount-1] = url.getData(); // may throw

}
catch (ConnectException e) {

// log the exception
// specifically detect and undo the partial operation
if (resultCount > oldCount) {

results[resultCount-1] = null;
resultCount = oldCount;

}
}

}
}
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finally clause

• Try-catch-finally
– Finally section includes code that is always 

executed before the block exits
• Executes in both graceful and ungraceful cases

– Usually used for
• Doing cleanup

– Closing streams and handles

– A return statement in the try clause will 
execute the finally clause before returning

• This is stylistically not good since it is confusing to 
the reader
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Finally example

public void processFile() {
processing = true;
try {

...
}
catch (IOException e) {

e.printStackTrace();
}
finally {

processing = false;
}

}
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Files and Streams

• File
– Represents a file or directory
– Java abstracts away the ugliness of dealing 

with files quite nicely
• Streams

– Way to deal with input and output
– A useful abstraction…
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Streams!??

• Water analogy
– Think of streams as pipes for water
– Do you know whether the water that comes out of 

your tap is coming from a) the ocean b) some river c) 
a water tank d) a water buffalo?

• Idea:
– You abstract away what the stream is connected to 

and perform all your I/O operations on the stream
– The stream may be connected to a file on a floppy, a 

file on a hard disk, a network connection or may even 
just be in memory!
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Hierarchy of Streams

• Java provides a hierarchy of streams
– Think of this as different “filters” you can add on to 

your water pipe
• Some may compress/decompress data
• Some may provide buffers

• Common Use Scenario
– Streams are used by layering them together to form 

the type of “pipe” we eventually want

file in 
filesystem

FileInputStreamBufferedReader

client code read() requests

data

GZIPInputStream
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Types of Streams

• InputStream / OutputStream
– Base class streams with few features
– read() and write()

• FileInputStream / FileOutputStream
– Specifically for connecting to files

• ByteArrayInputStream / ByteArrayOutputStream
– Use an in-memory array of bytes for storage!

• BufferedInputStream / BufferedOutputStream
– Improve performance by adding buffers
– Should almost always use buffers

• BufferedReader / BufferedWriter
– Convert bytes to unicode Char and String data
– Probably most useful for what we need
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Streams and Threads

• When a thread sends a read() to a stream, 
if the data is not ready, the thread blocks 
in the call to read(). When the data is 
there, the thread unblocks and the call to 
read() returns

• The reading/writing code does not need to 
do anything special

• Read 10 things at once – create 10 
threads!
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Reading Example

public void readLines(String fname) {
try {

// Build a reader on the fname, (also works with File object)
BufferedReader in = new BufferedReader(new

FileReader(fname));
String line;
while ((line = in.readLine()) != null) {

// do something with 'line'
System.out.println(line);

}

in.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}
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Writing Example

public void writeLines(String fname) {
try {

// Build a writer on the fname (also works on File objects)
BufferedWriter out = new BufferedWriter(new FileWriter(fname));

// Send out.print(), out.println() to write chars
for (int i=0; i<data.size(); i++) {

out.println( ... ith data string ... );
}

out.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}
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HTTP

• Java has build-in and very elegant support 
for HTTP

• Code on the handout is what you will need 
for HW #3 Part b!

• URL
– Uniform Resource Location

• http://cs193j.stanford.edu

• URLConnection
– To open a network connection to a URL and 

be able to get a stream from it to read data!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

HTTP Example
• public static void dumpURL(String urlString) {
• try {
• URL url = new URL(urlString);
• URLConnection conn = url.openConnection();
• InputStream stream = conn.getInputStream();
• BufferedReader in = new BufferedReader( new 

InputStreamReader(stream));
•
• String line;
• while ( (line = in.readLine()) != null) {
• System.out.println(line);
• }
• in.close();
• }
• catch (MalformedURLException e) {
• e.printStackTrace();
• }
• catch (IOException e) {
• e.printStackTrace();
• }
• }
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Summary!

• Today
– More HW3b intuition
– MVC

• Model View Controller paradigm
• JTable

– Exceptions
– Files and Streams

• Assigned Work Reminder
– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003
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