
1

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Winter Quarter 2003

Lecture 12
Files and Streams, XML, SAX XML Parsing

Manu Kumar
sneaker@stanford.edu

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 2 Handouts for today!
– #27: XML
– #28: SAX XML Parsing

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last Time
– More HW3b intuition…
– MVC

• Model View Controller paradigm
• JTable

– Exceptions
• try/catch/finally
• Exception patterns

• Assigned Work Reminder
– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Today

• Today:
– Files and Streams
– XML

• Introduction
• Java XML
• DOM
• DotPanel example
• XML Scenarios

– SAX XML Parsing (potentially next time)

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Files and Streams (Handout #26)

• File
– Represents a file or directory

• Platform independent way to test file attributes, list directories
– Java abstracts away the ugliness of dealing with files

quite nicely
– Do not open File object directly, instead we use

streams…
• Streams

– Way to deal with input and output
– A useful abstraction…

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Streams!??

• Water analogy
– Think of streams as pipes for water
– Do you know whether the water that comes out of

your tap is coming from a) the ocean b) some river c)
a water tank d) a water buffalo?

• Idea:
– You abstract away what the stream is connected to

and perform all your I/O operations on the stream
– The stream may be connected to a file on a floppy, a

file on a hard disk, a network connection or may even
just be in memory!

2

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

InputStream / OutputStream

• Base class streams
– Very few features beyond read() and write()

• Deal with plain bytes
• Usually used through an intermediate

class or a subclass
– We’ll see this in a bit

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Types of Streams

• InputStream / OutputStream
– Base class streams with few features
– read() and write()

• FileInputStream / FileOutputStream
– Specifically for connecting to files

• ByteArrayInputStream / ByteArrayOutputStream
– Use an in-memory array of bytes for storage!

• BufferedInputStream / BufferedOutputStream
– Improve performance by adding buffers
– Should almost always use buffers

• BufferedReader / BufferedWriter
– Convert bytes to unicode Char and String data
– Probably most useful for what we need

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Common Use Scenario

• Using a BufferedReader to read data from
a file…

file in
filesystem

FileInputStreamBufferedReader

client code read() requests

data

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Hierarchy of Streams

• Java provides a hierarchy of streams
– Think of this as different “filters” you can add on to

your water pipe
• Some may compress/decompress data
• Some may provide buffers

• Common Use Scenario
– Streams are used by layering them together to form

the type of “pipe” we eventually want

file in
filesystem

FileInputStreamBufferedReader

client code read() requests

data

GZIPInputStream

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Streams and Threads

• When a thread sends a read() to a stream,
if the data is not ready, the thread blocks
in the call to read(). When the data is
there, the thread unblocks and the call to
read() returns

• The reading/writing code does not need to
do anything special

• Read 10 things at once – create 10
threads!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Reading Example

public void readLines(String fname) {
try {

// Build a reader on the fname, (also works with File object)
BufferedReader in = new BufferedReader(new

FileReader(fname));
String line;
while ((line = in.readLine()) != null) {

// do something with 'line'
System.out.println(line);

}

in.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}

3

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Writing Example

public void writeLines(String fname) {
try {

// Build a writer on the fname (also works on File objects)
BufferedWriter out = new BufferedWriter(new FileWriter(fname));

// Send out.print(), out.println() to write chars
for (int i=0; i<data.size(); i++) {

out.println(... ith data string ...);
}

out.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

HTTP

• Java has build-in and very elegant support
for HTTP

• Code on the handout is what you will need
for HW #3 Part b!

• URL
– Uniform Resource Location

• http://cs193j.stanford.edu

• URLConnection
– To open a network connection to a URL and

be able to get a stream from it to read data!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

HTTP Example
public static void dumpURL(String urlString) {

try {
URL url = new URL(urlString);
URLConnection conn = url.openConnection();
InputStream stream = conn.getInputStream();
BufferedReader in = new BufferedReader(new

InputStreamReader(stream));

String line;
while ((line = in.readLine()) != null) {

System.out.println(line);
}
in.close();

}
catch (MalformedURLException e) {

e.printStackTrace();
}
catch (IOException e) {

e.printStackTrace();
}

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Reading in larger chunks…

/*
Given a reader, reads all its chars into a StringBuffer.

*/
public static StringBuffer readIntoBuffer(Reader in) throws IOException {

// char array for temporary storage
char[] chars = new char[512];
int len;

StringBuffer buff = new StringBuffer();

// call read() to put chars into the array
// read() returns -1 on EOF
while ((len = in.read(chars, 0, chars.length)) >= 0) {

// append the chars into the String Buffer
buff.append(chars, 0, len);

}
return(buff);

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

XML (Handout #27)

• eXtensible Markup Language
– Textual data format

• A way of describing bindings using text
– Simple

• Lost of hype for something so simple
– Standardized

• A data exchange format
– Helps with the basic problem of structure and

parsing
• Applications still need to agree on the meaning of

the data

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

DTD

• Data Type Definition
– Formal description of the allowed structure for

a class of XML elements
• A parser or other tool can formally check that a

document meets the DTD structure

• XML resources
– http://www.xml.org
– http://www.w3.org/XML
– http://java.sun.com/xml

4

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

XML Tags

• Tags
– Meta content in text

• Similar to HTML tags
• Here is some text <red>with this</red> marked as red

– Tags are case-sensitive, unlike HTML
– May contain raw text or other tags
– <tag></tag> is equivalent to <tag />

• Tag Attributes
– Store name value binding inside a tag
– May use single quote or double quote

• <dot x=“72” y=“13” />

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Special Characters

• Some characters are used as part of the
description and therefore must be
encoded
– All end with a ;

• Examples
– < encoded as <
– > encoded as >
– & encode as &
– “ encode as "
– ‘ encode as '

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

XML Strategies

• Text form
– Used like HTML, lots of text with tags sprinkled in

between
<foo>And here is some text</foo>

• Tree form
– Written as a tree structure…

<person>
<name>Hans Gruber</name>
<id>123456</id>
<username>hans</username>

</person>
– More commonly used for XML

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Tags vs. Attributes

• The following are equivalent
– Attribute Method

<dot x="27" y="13">
– Tag Method

<dot>
<x>27</x>
<y>13</y>

</dot>

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Tags vs. Attributes Style

• Tags and attributes can encode equivalent
information

• Rules of thumb
– Use attribute method when the data is short

• <dot x='6' y='13' />
– Use the tag method is the data is lengthy

• <description>How did our constructed suburban landscape
come to be so unpleasant, and what to do about it. The
Geography of Nowhere is a landmark work in growth of the
New Urbanism movement.</description>

– Use the tag way if a node can have an arbitrary
number of child nodes

• <parent> <child>..</child> <child>..</child>
<child>..</child> </parent>

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Dots XML example

• Dots – a set of (x,y) points
• Root node: “dots”
• Child nodes: “dot” with x and y attributes

<?xml version="1.0" encoding="UTF-8"?>
<dots>
<dot x="72" y="101" />
<dot x="170" y="164" />
<dot x="184" y="158" />
<dot x="194" y="146" />
<dot x="191" y="133" />
<dot x="164" y="84" />
<dot x="119" y="89" />

</dots>

5

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java XML Support

• JAXP project
– http://java.sun.com/xml
– Java API for XML Processing (JAXP)
– Supports processing of XML documents using DOM,

SAX, and XSLT.
– Enables applications to parse and transform XML

documents independent of a particular XML
processing implementation

• SAX
– http://www.saxproject.org/
– Simple API for XML
– First widely adopted API for XML in Java

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java XML Jar files

• For Java 1.3
– jaxp.jar and crimson.jar are required

• For Java 1.4
– XML classes are part of the default

distribution
• No additional jar files needed

– Use 1.4!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

DOM

• Document Object Model
– Tree of XML nodes
– Can iterate over the tree to look at the nodes
– Can edit the tree to add/remove nodes

• DOM Document
– In memory representation of the entire tree
– Has a pointer to the root node
– Building the DOM tree is expensive

• Each node is a java object

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Element Node

• Represents each <tag>… </tag> section
• Nodes contain other children nodes
• Nodes can have attribute/value bindings
• There can be free form text between the nodes

– These usually show up as Text Nodes
• In JAXP, Element is a subclass of Node

– Our code will tend to use Elemeent, since it responds
to getAttribute/setAttribute

• Root Node
– Contains all the content and is the one child of the

document object

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Reading an XML document

• Our approach
– Use the DocumentBuilder.parse() method to read the

XML and build the DOM in memory
– Traverse it to examine the nodes and get the data out

• Alternatives
– SAX – shows the nodes of the XML document one at

a time; Does not build the tree in memory
– Use the DOM tree as our data model itself

• No translation step for reading or writing

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Reading DOM into Memory

• Imports for XML support

// Standard imports for XML
import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.w3c.dom.*;
....

6

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Read DOM into Memory

// The following is the standard incantation to get a Document object
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setValidating(false);

DocumentBuilder db = null;
try {

db = dbf.newDocumentBuilder();
} catch (ParserConfigurationException pce) {

pce.printStackTrace();
}

// Parse the XML to build the whole doc tree
Document doc = db.parse(file);

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Traversal Methods

// Get root node of document
Element root = doc.getDocumentElement();

// Get list of children of given tag name
NodeList list = root.getElementsByTagName("tagname");

// Number of children in list
int len = list.getLength();

// Get nth child
Element elem = (Element) list.item(n);

// Get an attribute out of a element
// (returns "" if there is no such attribute)
String s = elem.getAttribute("attribute");

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Writing an XML file

• Our approach
– Construct the DOM Document tree in memory
– Trick: Downcast the Document object into an

XMLDocument
• XMLDocument responds to a write() message

where it writes itself out in text form!

• Alternatives
– Using XSLT (complicated)
– Faster to write using println()

• But then we have to manually take care of the tags
and encoding

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

DOM Writing code

• Two line trick for writing out the DOM…

// 1. Cast the doc down to an XmlDocument
XmlDocument x = (XmlDocument) doc;

// 2. XmlDocument knows how to write itself out Woo Hoo!
x.write(out, "UTF-8");

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

DOM Editing Methods

// Create a new node (still needs to be added)
Element elem = document.createElement("tagname");

// Append a child node to an existing node
node.appendChild(elem);

// Set an attribute/value binding in a node.
// (the strings should be xml-ready text --
// no embeded " or < or &)
elem.setAttribute(attr-string, value-string);

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Dots Example

• Build on previous DotPanel example…
– Mouse tracking

• clicking makes a new point, clicking on an existing point moves it
– Smart repaint

• only repaints the needed rectangle when a dot moves
– File Open/Save

• uses the KDeskFrame/KinnerFrame code to provide a
document/window interface

– Serialization
• has code to save and load the data model using Java serialization.

See saveSerial() and loadSerial()
– XML

• has code that uses the Java XML package (JAXP-1.1) to save and
load the data model to XML text. See saveXML() and loadXML().

• http://java.sun.com/xml/
• The Jaxp libraries are in jaxp.jar and crimson.jar for Java 1.3 and

earlier

7

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Dots Example…

• Code walkthrough of selected sections…
– In emacs…

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

XML Takes

• Standard format
– Similar to the plain text file
– Provides a lowest common denominator approach

easy for other programs to parse
– Examples

• Data files, preferences files, data exchange format

• Big and Slow
– XML-bloat

• Text description of data usually takes more space!
• Tradeoff between compatibility and saving programmer time

and space
– Space is getting cheaper (network bandwidth and hard disk)

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

XSL / XSLT

• A movement to keep “presentation” out of
XML

• XSL – eXtensible Stylesheet Language
– Like HTML style sheets for XML

• XSLT – XSL Transformations
– Used to translate from one XML format into

another
• For example to take XML data and format it as

HTML

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Backward / Forward Compatibility

• Tag names declare what each piece of data is
– Makes it easier to have additional information in the

format to ensure backward/forward compatibilty
• Backward Compatibility

– A new version of the application will be able to read
the documents from the old version

• Forward Compatibility
– An old version of the application will be able to read

documents from the new version
• Roundtrip Compatibility

– New and old version can read each other and we can
move between versions transparently

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

SAX XML Parsing (Handout #28)

• SAX parsing is cheaper than DOM parsing
– SAX tells you of each element as it is found in

a single pass of the XML document
– We must maintain state ourselves

• XMLDotReader Examples
– Code walkthrough in emacs…

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Summary!

• Today
– Files and Streams
– XML

• Introduction
• Java XML
• DOM
• DotPanel example
• XML Scenarios

– SAX XML Parsing (?)
• Assigned Work Reminder

– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003

	CS193J: Programming in JavaWinter Quarter 2003Lecture 12Files and Streams, XML, SAX XML Parsing
	Handouts
	Recap
	Today
	Files and Streams (Handout #26)
	Streams!??
	InputStream / OutputStream
	Types of Streams
	Common Use Scenario
	Hierarchy of Streams
	Streams and Threads
	Reading Example
	Writing Example
	HTTP
	HTTP Example
	Reading in larger chunks…
	XML (Handout #27)
	DTD
	XML Tags
	Special Characters
	XML Strategies
	Tags vs. Attributes
	Tags vs. Attributes Style
	Dots XML example
	Java XML Support
	Java XML Jar files
	DOM
	Element Node
	Reading an XML document
	Reading DOM into Memory
	Read DOM into Memory
	Traversal Methods
	Writing an XML file
	DOM Writing code
	DOM Editing Methods
	Dots Example
	Dots Example…
	XML Takes
	XSL / XSLT
	Backward / Forward Compatibility
	SAX XML Parsing (Handout #28)
	Summary!

