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Winter Quarter 2003

Lecture 12
Files and Streams, XML, SAX XML Parsing

Manu Kumar
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Handouts

• 2 Handouts for today!
– #27: XML
– #28: SAX XML Parsing
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Recap

• Last Time
– More HW3b intuition…
– MVC

• Model View Controller paradigm
• JTable

– Exceptions
• try/catch/finally
• Exception patterns

• Assigned Work Reminder
– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003
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Today

• Today:
– Files and Streams
– XML

• Introduction
• Java XML
• DOM
• DotPanel example
• XML Scenarios

– SAX XML Parsing (potentially next time)
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Files and Streams (Handout #26)

• File
– Represents a file or directory

• Platform independent way to test file attributes, list directories
– Java abstracts away the ugliness of dealing with files 

quite nicely
– Do not open File object directly, instead we use 

streams…
• Streams

– Way to deal with input and output
– A useful abstraction…
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Streams!??

• Water analogy
– Think of streams as pipes for water
– Do you know whether the water that comes out of 

your tap is coming from a) the ocean b) some river c) 
a water tank d) a water buffalo?

• Idea:
– You abstract away what the stream is connected to 

and perform all your I/O operations on the stream
– The stream may be connected to a file on a floppy, a 

file on a hard disk, a network connection or may even 
just be in memory!
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InputStream / OutputStream

• Base class streams
– Very few features beyond read() and write()

• Deal with plain bytes
• Usually used through an intermediate 

class or a subclass
– We’ll see this in a bit
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Types of Streams

• InputStream / OutputStream
– Base class streams with few features
– read() and write()

• FileInputStream / FileOutputStream
– Specifically for connecting to files

• ByteArrayInputStream / ByteArrayOutputStream
– Use an in-memory array of bytes for storage!

• BufferedInputStream / BufferedOutputStream
– Improve performance by adding buffers
– Should almost always use buffers

• BufferedReader / BufferedWriter
– Convert bytes to unicode Char and String data
– Probably most useful for what we need
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Common Use Scenario

• Using a BufferedReader to read data from 
a file…

file in 
filesystem

FileInputStreamBufferedReader

client code read() requests

data
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Hierarchy of Streams

• Java provides a hierarchy of streams
– Think of this as different “filters” you can add on to 

your water pipe
• Some may compress/decompress data
• Some may provide buffers

• Common Use Scenario
– Streams are used by layering them together to form 

the type of “pipe” we eventually want

file in 
filesystem

FileInputStreamBufferedReader

client code read() requests

data

GZIPInputStream
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Streams and Threads

• When a thread sends a read() to a stream, 
if the data is not ready, the thread blocks 
in the call to read(). When the data is 
there, the thread unblocks and the call to 
read() returns

• The reading/writing code does not need to 
do anything special

• Read 10 things at once – create 10 
threads!
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Reading Example

public void readLines(String fname) {
try {

// Build a reader on the fname, (also works with File object)
BufferedReader in = new BufferedReader(new

FileReader(fname));
String line;
while ((line = in.readLine()) != null) {

// do something with 'line'
System.out.println(line);

}

in.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}
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Writing Example

public void writeLines(String fname) {
try {

// Build a writer on the fname (also works on File objects)
BufferedWriter out = new BufferedWriter(new FileWriter(fname));

// Send out.print(), out.println() to write chars
for (int i=0; i<data.size(); i++) {

out.println( ... ith data string ... );
}

out.close(); // polite
}
catch (IOException e) {

e.printStackTrace();
}

}
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HTTP

• Java has build-in and very elegant support 
for HTTP

• Code on the handout is what you will need 
for HW #3 Part b!

• URL
– Uniform Resource Location

• http://cs193j.stanford.edu

• URLConnection
– To open a network connection to a URL and 

be able to get a stream from it to read data!
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HTTP Example
public static void dumpURL(String urlString) {

try {
URL url = new URL(urlString);
URLConnection conn = url.openConnection();
InputStream stream = conn.getInputStream();
BufferedReader in = new BufferedReader( new 

InputStreamReader(stream));

String line;
while ( (line = in.readLine()) != null) {

System.out.println(line);
}
in.close();

}
catch (MalformedURLException e) {

e.printStackTrace();
}
catch (IOException e) {

e.printStackTrace();
}

}
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Reading in larger chunks…

/*
Given a reader, reads all its chars into a StringBuffer.

*/
public static StringBuffer readIntoBuffer(Reader in) throws IOException {

// char array for temporary storage
char[] chars = new char[512];
int len;

StringBuffer buff = new StringBuffer();

// call read() to put chars into the array
// read() returns -1 on EOF
while ((len = in.read(chars, 0, chars.length)) >= 0) {

// append the chars into the String Buffer
buff.append(chars, 0, len);

}
return(buff);

}
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XML (Handout #27)

• eXtensible Markup Language
– Textual data format

• A way of describing bindings using text
– Simple

• Lost of hype for something so simple
– Standardized

• A data exchange format
– Helps with the basic problem of structure and 

parsing
• Applications still need to agree on the meaning of 

the data
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DTD

• Data Type Definition
– Formal description of the allowed structure for 

a class of XML elements
• A parser or other tool can formally check that a 

document meets the DTD structure

• XML resources
– http://www.xml.org
– http://www.w3.org/XML
– http://java.sun.com/xml
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XML Tags

• Tags
– Meta content in text

• Similar to HTML tags
• Here is some text <red>with this</red> marked as red

– Tags are case-sensitive, unlike HTML
– May contain raw text or other tags
– <tag></tag> is equivalent to <tag />

• Tag Attributes
– Store name value binding inside a tag
– May use single quote or double quote

• <dot x=“72” y=“13” />
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Special Characters

• Some characters are used as part of the 
description and therefore must be 
encoded
– All end with a ;

• Examples
– < encoded as &lt;
– > encoded as &gt;
– & encode as &amp;
– “ encode as &quot;
– ‘ encode as &apos;
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XML Strategies

• Text form
– Used like HTML, lots of text with tags sprinkled in 

between
<foo>And here is some <b>text</b></foo> 

• Tree form
– Written as a tree structure…

<person>
<name>Hans Gruber</name>
<id>123456</id>
<username>hans</username>

</person>
– More commonly used for XML
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Tags vs. Attributes

• The following are equivalent
– Attribute Method

<dot x="27" y="13">
– Tag Method

<dot>
<x>27</x>
<y>13</y>

</dot> 
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Tags vs. Attributes Style

• Tags and attributes can encode equivalent 
information

• Rules of thumb
– Use attribute method when the data is short

• <dot x='6' y='13' />
– Use the tag method is the data is lengthy

• <description>How did our constructed suburban landscape 
come to be so unpleasant, and what to do about it. The 
Geography of Nowhere is a landmark work in growth of the 
New Urbanism movement.</description>

– Use the tag way if a node can have an arbitrary 
number of child nodes

• <parent>  <child>..</child>  <child>..</child>   
<child>..</child>  </parent> 
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Dots XML example

• Dots – a set of (x,y) points
• Root node: “dots”
• Child nodes: “dot” with x and y attributes

<?xml version="1.0" encoding="UTF-8"?>
<dots>
<dot x="72" y="101" />
<dot x="170" y="164" />
<dot x="184" y="158" />
<dot x="194" y="146" />
<dot x="191" y="133" />
<dot x="164" y="84" />
<dot x="119" y="89" />

</dots> 
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Java XML Support

• JAXP project
– http://java.sun.com/xml
– Java API for XML Processing (JAXP)
– Supports processing of XML documents using DOM, 

SAX, and XSLT. 
– Enables applications to parse and transform XML 

documents independent of a particular XML 
processing implementation

• SAX
– http://www.saxproject.org/
– Simple API for XML 
– First widely adopted API for XML in Java
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Java XML Jar files

• For Java 1.3
– jaxp.jar and crimson.jar are required

• For Java 1.4
– XML classes are part of the default 

distribution
• No additional jar files needed

– Use 1.4!
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DOM

• Document Object Model
– Tree of XML nodes
– Can iterate over the tree to look at the nodes
– Can edit the tree to add/remove nodes

• DOM Document
– In memory representation of the entire tree
– Has a pointer to the root node
– Building the DOM tree is expensive

• Each node is a java object
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Element Node

• Represents each <tag>… </tag> section
• Nodes contain other children nodes
• Nodes can have attribute/value bindings
• There can be free form text between the nodes

– These usually show up as Text Nodes
• In JAXP, Element is a subclass of Node

– Our code will tend to use Elemeent, since it responds 
to getAttribute/setAttribute

• Root Node
– Contains all the content and is the one child of the 

document object
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Reading an XML document

• Our approach
– Use the DocumentBuilder.parse() method to read the 

XML and build the DOM in memory
– Traverse it to examine the nodes and get the data out

• Alternatives
– SAX – shows the nodes of the XML document one at 

a time; Does not build the tree in memory
– Use the DOM tree as our data model itself

• No translation step for reading or writing
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Reading DOM into Memory

• Imports for XML support

// Standard imports for XML
import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;
import org.w3c.dom.*;
....



6

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Read DOM into Memory

// The following is the standard incantation to get a Document object
DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setValidating(false);

DocumentBuilder db = null;
try {

db = dbf.newDocumentBuilder();
} catch (ParserConfigurationException pce) {

pce.printStackTrace();
}

// Parse the XML to build the whole doc tree
Document doc  = db.parse(file);
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Traversal Methods

// Get root node of document
Element root = doc.getDocumentElement();

// Get list of children of given tag name
NodeList list = root.getElementsByTagName("tagname");

// Number of children in list
int len = list.getLength();

// Get nth child
Element elem = (Element) list.item(n);

// Get an attribute out of a element
// (returns "" if there is no such attribute)
String s = elem.getAttribute("attribute");
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Writing an XML file

• Our approach
– Construct the DOM Document tree in memory
– Trick: Downcast the Document object into an 

XMLDocument
• XMLDocument responds to a write() message 

where it writes itself out in text form!

• Alternatives
– Using XSLT (complicated)
– Faster to write using println()

• But then we have to manually take care of the tags 
and encoding
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DOM Writing code

• Two line trick for writing out the DOM…

// 1. Cast the doc down to an XmlDocument
XmlDocument x = (XmlDocument) doc;

// 2. XmlDocument knows how to write itself out Woo Hoo!
x.write(out, "UTF-8");
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DOM Editing Methods

// Create a new node (still needs to be added)
Element elem = document.createElement("tagname");

// Append a child node to an existing node
node.appendChild(elem);

// Set an attribute/value binding in a node.
// (the strings should be xml-ready text --
// no embeded " or < or &)
elem.setAttribute(attr-string, value-string);
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Dots Example

• Build on previous DotPanel example…
– Mouse tracking

• clicking makes a new point, clicking on an existing point moves it 
– Smart repaint

• only repaints the needed rectangle when a dot moves
– File Open/Save

• uses the KDeskFrame/KinnerFrame code to provide a 
document/window interface

– Serialization
• has code to save and load the data model using Java serialization. 

See saveSerial() and loadSerial()
– XML

• has code that uses the Java XML package (JAXP-1.1) to save and 
load the data model to XML text. See saveXML() and loadXML().

• http://java.sun.com/xml/
• The Jaxp libraries are in jaxp.jar and crimson.jar for Java 1.3 and 

earlier
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Dots Example…

• Code walkthrough of selected sections…
– In emacs…
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XML Takes

• Standard format
– Similar to the plain text file
– Provides a lowest common denominator approach 

easy for other programs to parse
– Examples

• Data files, preferences files, data exchange format

• Big and Slow
– XML-bloat

• Text description of data usually takes more space!
• Tradeoff between compatibility and saving programmer time 

and space
– Space is getting cheaper (network bandwidth and hard disk)
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XSL / XSLT

• A movement to keep “presentation” out of 
XML

• XSL – eXtensible Stylesheet Language
– Like HTML style sheets for XML

• XSLT – XSL Transformations
– Used to translate from one XML format into 

another
• For example to take XML data and format it as 

HTML
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Backward / Forward Compatibility

• Tag names declare what each piece of data is
– Makes it easier to have additional information in the 

format to ensure backward/forward compatibilty
• Backward Compatibility

– A new version of the application will be able to read 
the documents from the old version

• Forward Compatibility
– An old version of the application will be able to read 

documents from the new version
• Roundtrip Compatibility

– New and old version can read each other and we can 
move between versions transparently
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SAX XML Parsing (Handout #28)

• SAX parsing is cheaper than DOM parsing
– SAX tells you of each element as it is found in 

a single pass of the XML document
– We must maintain state ourselves

• XMLDotReader Examples
– Code walkthrough in emacs…
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Summary!

• Today
– Files and Streams
– XML

• Introduction
• Java XML
• DOM
• DotPanel example
• XML Scenarios

– SAX XML Parsing (?)
• Assigned Work Reminder

– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003
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