
Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

CS193J: Programming in Java
Winter Quarter 2003

Lecture 13
SAX XML Parsing, HW4, Advanced Java

Manu Kumar
sneaker@stanford.edu

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Handouts

• 3 Handouts for today!
– #29: Advanced Java
– #30: HW4: XEdit
– #31: Java Implementation and Performance

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Guest Lecture Reminder

• When
– August 7th in class (4:15 PM in Gates B01)

• Speakers
– George Grigoryev (J2EE Senior Product Manager, Sun)
– Pierre Delisle (Senior Staff Engineer, Sun)

• Topics
– Structure of Java Platforms: J2SE, J2EE, J2ME, J2EE 1.4/1.5

Platform Overview and Roadmap, Introduction to the JSP and
Servlets, Hands-on JSTL 1.1/JSP 2.0 , Code Samples; Demo,
Where to get free Runtime, Compilers and Tools, Good books,
good links - Q & A

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Recap

• Last Time
– Files and Streams
– XML

• Introduction
• Java XML
• DOM
• DotPanel example

• Assigned Work Reminder
– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Today

• Today:
– SAX XML Parsing

• XMLDotReader example
– Advanced Java

• Regular Expressions
• Assert

– HW4 – XEdit
– Java Implementation and Performance

• Bytecode
• Optimization Techniques

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

SAX XML Parsing (Handout #28)

• SAX parsing is cheaper than DOM parsing
– SAX tells you of each element as it is found in

a single pass of the XML document
– We must maintain state ourselves

• XMLDotReader Examples
– Code walkthrough in emacs…

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Advanced Java (Handout #29)

• Features that are new in Java 1.4
– Regular Expressions
– Assertions

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Regular Expressions

• Regular Expressions
– Regular expressions ("regex's" for short) are sets of

symbols and syntactic elements used to match
patterns of text

– Example: cp *.html ../
• Here *.html is a regular expression!

– Bottomline: used for matching patterns in text
• Can very often state some very complex patterns in a simple

regular expression

– Resources
• http://developer.java.sun.com/developer/technicalArticles/rele

ases/1.4regex/

http://developer.java.sun.com/developer/technicalArticles/releases/1.4regex/
http://developer.java.sun.com/developer/technicalArticles/releases/1.4regex/

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Pattern

• java.util.regex.Pattern
– Represents a regular expression pattern
– Supports Perl-style regular expressions

• \w+ \s [^a-z0-9]* etc.
– Need to use double backslash (\\) in strings to

get a single backslash (\)
• \\s translates to \s set to the regular expression

engine

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Matcher

• java.util.regex.Matcher
– Create a matcher out of a pattern and some text
– The matcher can search for a pattern in the text
– find() searches for an occurrence of the pattern

• Searches from a point after the previous find()

– group() returns the matched text from the previous
find

– Matcher support lots of different ways to look and
iterate with the pattern on the text

• Refer to the API documentation for details

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Regular Expression Example

import java.util.regex.*;
...
// Extract email addrs from text
// email addr is @ surrounded by \w.-_
// We need to use double \\ in the " string, to put a single \ in the pattern
// (\w represents a 'word' character: a-zA-Z and _
String text = "blah blah, nick@cs, binky binky foo@bar.com; spam_me@foo.edu ";

String re = "[\\w\\.\\-]+\\@[\\w\\.\\-]+";
Pattern pattern = Pattern.compile(re);

// Create a matcher on the string
Matcher matcher = pattern.matcher(text);

// find() will iterate through matches in the text
while (matcher.find()) {

// group() returns the most recently matched text
System.out.println("email:" + matcher.group());

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Regular Expression Example

/*
Output
email:nick@cs
email:foo@bar.com
email:spam_me@foo.edu

*/

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

pattern.split()

• Used to extract the strings separated by a given
pattern

// Use split() to extract parts of a string
String text2 = "Hello, what's with all the punctuation, and stuff here; I want just

the words.";

// The pattern matches one or more adjacent whitespace or punctuation chars
Pattern splitter = Pattern.compile("[\\s,.;]+");

// Split() uses the pattern as a separator, returns all the other strings:
// "Hello" "what's" "with" ...
String[] words = splitter.split(text2);
for (int i=0; i<words.length; i++) {

System.out.println(words[i]);
}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Static Pattern.match()

• Static convenience method
– Builds a pattern and matcher, runs the matches()

method against the given text
– Returns true is the entire text matches the pattern
– Less efficient

• Pattern and matcher are instantiated, used once and
discarded

– Useful for simple cases

boolean found = Pattern.matches("\\w+\\s\\w+", "hello there");
System.out.println(found); // true

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Assertions

• Assert
– Added in Java 1.4
– Use assertions to sprinkle code with tests of what

should be true.
• The assertion throws an AssertionError exception if the test

is false.
– Helps document what you think is going on, say, at

the top of each loop iteration
• help find bugs more quickly in this code, and in client code

that calls this code.
– The assert code may be deleted by the JVM at

runtime, so do not put code that must execute in the
assert. Assert should do read-only tests.

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Assertions continued

• Assert
– To compile with asserts, use the '-source 1.4' to javac.

• If you compile this way, the code will only work on a 1.4 or
later JVM.

• By default at runtime, assert is not enabled -- they are NOPs

– Turn asserts on with the -enableassertions switch to
the 'java' command

• (-ea is the shorthand)
• java -ea // turns on asserts for the whole program
• java -ea MyClass // turns on asserts for just that class
• java -ea -da MyClass // turn on asserts, but turn them off for

MyClass

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Assert Example
public static void main(String[] args) {

int len=1;

// assert a condition that should be true
assert len<100;
// Can include a : <string> after the assert that goes in the error printout
assert len<1 : "len=" + len;

/*
Output:
Exception in thread "main" java.lang.AssertionError: len=1

at Assert.main(Advanced.java:80)
*/

// Suppose your code calls foo(), and it returns 0 on success
// Never do this:
// assert foo()==0;
// Do it this way, so it still works if the assert is disabled
// int result = foo();
// assert result==0;

}
}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

HW 4: XEdit (Handout #30)

• XEdit
– Tool to do search and replace on XML files
– Your job:

• Traverse the DOM to do search and replace
– Can use regexs if you want or just use String methods

such as indexOf()

– Simple assignment – 2-5 hours
• Due

– Before midnight, Wednesday, August 13th,
2003

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Implementation and Performance (Handout #31)

• Java Compiler Structure
– .java files contain source code
– Compiled into .class files which contain bytecode

• Bytecode
– A compiled class stored in a .class file or a .jar file
– Represent a computation in a portable way

• As a PDF is to an image
• Java Virtual machine

– Abstract stack machine
• Bytecode is written to run on the JVM

– Program that loads and runs the bytecode
• Interprets the bytecode to “run” the program

– Runs code with various robustness and safety checks

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Verifier and Bytecode

• Verifier
– Part of the VM that checks that bytecode is well

formed
• Makes Java virus proof

– A malicious person can write invalid bytecode, but it
will be detected by the Verifier

• Usually no verifier errors since the compiler produces
“correct” bytecode

• Still possible to write bytecode by hand

• Bytecode example
– javap –c will print the actual bytecode for a class

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Bytecode Primer

• The byte code executes against a stack machine
-- adding 1 + 2 like this

iload 1; // push a 1 onto the stack
iload 2; // push a 2 onto the stack
add; // add the two numbers on the stack

// leaving the answer on the stack
• "load" means push a value onto the stack
• aload_0 = push address of slot 0 -- slot 0 is the "this"

pointer
• iload_1 = push an int from slot 1 (a parameter)
• getfield -- using the pointer on the stack, load an ivar
• putfield -- as above, but store to the ivar

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Student Bytecode example

nick% javap -c Student
Compiled from Student.java
public class Student extends java.lang.Object {

protected int units;
public static final int MAX_UNITS;
public static final int DEFAULT_UNITS;
public Student(int);
public Student();
public int getUnits();
public void setUnits(int);
public int getStress();
public boolean dropClass(int);
public static void main(java.lang.String[]);

}
<snip>

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Student Bytecode Example
Method int getUnits()

0 aload_0
1 getfield #20 <Field int units>
4 ireturn

Method void setUnits(int)
0 iload_1
1 iflt 10
4 iload_1
5 bipush 20
7 if_icmple 11

10 return
11 aload_0
12 iload_1
13 putfield #20 <Field int units>
16 return

Method int getStress()
0 aload_0
1 getfield #20 <Field int units>
4 bipush 10
6 imul
7 ireturn

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

JITs and Hotspot

• Just-In-Time Compiler
– JVM may compile the bytecode into native code at runtime

• Maintains robustness/safety checks (slow startup)

• HotSpot
– Does a sophisticated runtime optimization for which part to

compile
– Sometimes does a better job than native C++ code since it has

more information about the running program
• Future

– May cache the compiled version to speed up class loading
– Bytecode is a distribution format

• Similar to PDF

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Optimization Quotes

• Rules of Optimization
– Rule 1: Don’t do it.
– Rule 2 (for experts only): Don’t do it yet.

• M.A. Jackson

• “More computing sins are commited in the name of
efficiency (without necessariy achieving it) that for any
other reason – including blind stupidity.” – W.A. Wulf
– Y2K bug! – saving 2 bytes!

• We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all
evil.” – Donald Knuth

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Optimization 101

• Reality
– Hard to predict where the bottlenecks are
– Easier to use tools to measure the bottlenecks once

the code is written
• Write the code you want to be correct and finished first, then

worry about optimization

• “Premature Optimization” = evil
– Classic advice from Don Knuth
– Write the code to be straightforward and correct first
– May already be fast enough!

• If not, measure the bottleneck
• Focus optimization on bottleneck using Algorithms and

Language optimizations

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Optimization 101

• Data Structures
– Have a profound influence on performance

• Early design helps once
– Choice of datastructure can constrain what

algorithms you can use
• Proportionality to Caller

– Foo() takes 1 ms. Bar() calls foo.
• If Bar() takes 20 ms, it’s not worth looking at Foo()
• If Bar() takes 2ms, then we should look at Foo()

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Optimization 101

• 1-1 User Event Rule
– If something happened a fixed number of

times (1-3) for each user event, then it’s not
worth looking at

– If something happens 100s of times for each
user even then it is worth looking at

– User events are very slow from the CPU’s
perspective

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #1

• 1-10-100 Rule
– Assignment – 1 unit of time
– Method call – 10 units of time
– New Object or Array – 100 units of time

• Rule of thumb only. Not scientific.
• Hard to determine the actual cost

• Also sometimes known as the 1-10-1000 rule,
but modern GC is much more efficient
– Bad idea to try and maintain your own free list. The

GC knows best.

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #2

• int getWidth() vs. Dimension getSize()
– getSize() requires a heap allocated object
– getWidth() and getHeight() may just be inlined

to move the two ints right into the local
variables of the caller code

• With Hotspot, shortlived object (like
Dimension) are less of a concern…

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #3

• Locals are faster than Instance variables
– Local (stack) variables faster than any member

variables of objects
• Easier for the optimizer to work with

• Inside loops, pull needed values into local
variables
– 1. Slow: message send

• … i < piece.getWidth()
– 2. Medium: instance variable

• … i < piece.width
– 3. Fast: local variable

• … final int width = piece.getWidth
• … i < width

– This is faster since the JIT can put the value in a native register

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #4

• Avoid Synchronized (Vector)
– Synchronized methods have a cost

associated with them
• This is significantly improved in Java 1.3

– Can have synchronized and unsynchronized
methods and switch based on some flag

– Use “immutable” objects to finesse
synchronization problems

– Vector class is sychronized for everything
• Use ArrayList instead!
• If you can use a regular array, even better

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #5
• StringBuffer

– Use StringBuffer for multiple append operations
– Convert to String only when done

• Automatic case
– Compiler optimizes the case of several string +’d together on

one line
– String s = “a string” + foo.toString() + “more”

• No:
String record; // ivar
void transaction(String id) {

record = record + " " + id; // NO, chews through memory
}

• Yes:
StringBuffer record;
void transaction(String id) {

record.append(" ");
record.append(id); + id;

}

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #6

• Don’t Parse
– Obvious but slow strategy – read in XML,

ASCII, etc.
– Build a big data structure

• Faster approach
– Read into memory, but keep as characters
– Search/Parse when needed
– Or Parse only subparts

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #7

• Avoid weird code
– JVM will optimize most stadard coding styles

• So write code in the most obvious, common way
– Weird code is often the result of an attempt at

optimization!
• Let the JIT/Hotspot do it’s thing!

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #8

• Threading / GUI Threading
– Use separate thread to ensure the GUI is

snappy
• Pros

– Makes best use of parallel hardware
• Cons

– Software is harder to write
– Bugs can be subtle
– Locking/Unlocking costs

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #9

• Inlining Methods/Classes
– JVM optimizers and HotSpot use aggressive

inlining
• Pasting called code into the caller code

– final keyword
• for a class means it will not be subclassed
• for a method means it will not be overridden

– Use final keyword to help the optimizer do
more inlining

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #9 cont.
InlinedNon-Inlined

A() {

B() {

C() {

A() {

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #9 cont.

• Advantages of inlining
– Values are passed from A() to B() to C()

• After inlining, the values can just stay in registers
• Reduced number of load/saves

– Propogation of analysis
• Having code inlined can often lead to better

optimizations since the compiler can see values
from start to finish

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Java Optimization Tip #10

• Think about memory traffic
– Old: CPU bound
– New: Memory bound

• CPU operations are cheaper and faster
• Once data is in the cache it is cheaper to work with

– Reduce the roundtrips to memory, disk, network

– Linked List vs. Chunked List
• Linked List: Read a node, then fetch the next node
• Chunked List: Each element contains a small array of

elements
– Makes better use of cache lines/memory pages
– … some of this is very low level! ☺

Tuesday, July 29th, 2003 Copyright © 2003, Manu Kumar

Summary!

• Today
– SAX XML Parsing

• XMLDotReader example
– Advanced Java

• Regular Expressions
• Assert

– HW4 – XEdit
– Java Implementation and Performance

• Bytecode
• Optimization Techniques

• Assigned Work Reminder
– HW 3a: ThreadBank
– HW 3b: LinkTester

• Both due before midnight on Wednesday, August 6th, 2003
– HW 4: XEdit

• Due before midnight on Wednesday, August 13th, 2003

	CS193J: Programming in JavaWinter Quarter 2003Lecture 13SAX XML Parsing, HW4, Advanced Java
	Handouts
	Guest Lecture Reminder
	Recap
	Today
	SAX XML Parsing (Handout #28)
	Advanced Java (Handout #29)
	Regular Expressions
	Pattern
	Matcher
	Regular Expression Example
	Regular Expression Example
	pattern.split()
	Static Pattern.match()
	Assertions
	Assertions continued
	Assert Example
	HW 4: XEdit (Handout #30)
	Java Implementation and Performance (Handout #31)
	Verifier and Bytecode
	Bytecode Primer
	Student Bytecode example
	Student Bytecode Example
	JITs and Hotspot
	Optimization Quotes
	Optimization 101
	Optimization 101
	Optimization 101
	Java Optimization Tip #1
	Java Optimization Tip #2
	Java Optimization Tip #3
	Java Optimization Tip #4
	Java Optimization Tip #5
	Java Optimization Tip #6
	Java Optimization Tip #7
	Java Optimization Tip #8
	Java Optimization Tip #9
	Java Optimization Tip #9 cont.
	Java Optimization Tip #9 cont.
	Java Optimization Tip #10
	Summary!

