STANFORD UNIVERSILY

CS193J: Programming in Java
Winter Quarter 2003

Lecture 13
SAX XML Parsing, HW4, Advanced Java

Manu Kumar
sneaker@stanford.edu




STANFORD UNIVERSILY

« 3 Handouts for today!
— #29:. Advanced Java
— #30: HW4: XEdit
—#31: Java Implementation and Performance




STANFORD UNIVERSILY

Guest Lecture Reminder

« When
— August 7! in class (4:15 PM in Gates B01)

« Speakers
— George Grigoryev (J2EE Senior Product Manager, Sun)
— Pierre Delisle (Senior Staff Engineer, Sun)
* Topics
— Structure of Java Platforms: J2SE, J2EE, J2ME, J2EE 1.4/1.5

Platform Overview and Roadmap, Introduction to the JSP and
Servlets, Hands-on JSTL 1.1/JSP 2.0 , Code Samples; Demo,

Where to get free Runtime, Compilers and Tools, Good books,
good links - Q & A



e Last Time

— Files and Streams
— XML

 |ntroduction
« Java XML
« DOM
» DotPanel example
* Assigned Work Reminder
— HW 3a: ThreadBank

— HW 3b: LinkTester
» Both due before midnight on Wednesday, August 6t", 2003



* Today:
— SAX XML Parsing
« XMLDotReader example

— Advanced Java
« Regular Expressions
» Assert

— HW4 — XEdit

— Java Implementation and Performance
» Bytecode
« Optimization Techniques



 SAX parsing is cheaper than DOM parsing

— SAX tells you of each element as it is found in
a single pass of the XML document

— We must maintain state ourselves

« XMLDotReader Examples
— Code walkthrough in emacs...




STANFORD UNIVERSILY

» "M Advanced Java (Handout #29)

 Features that are new in Java 1.4
— Regular Expressions
— Assertions




STANFORD UNIVERSILY

Regular Expressions

* Regular Expressions

— Regular expressions ("regex’s" for short) are sets of
symbols and syntactic elements used to match
patterns of text

— Example: cp *.html ../
» Here *.html is a regular expression!

— Bottomline: used for matching patterns in text

» Can very often state some very complex patterns in a simple
regular expression

— Resources

. http://developer.java.sun.com/developer/technicalArticles/rele
ases/1.4reqgex/



http://developer.java.sun.com/developer/technicalArticles/releases/1.4regex/
http://developer.java.sun.com/developer/technicalArticles/releases/1.4regex/

STANFORD UNIVERSILY

Pattern

* java.util.regex.Pattern
— Represents a regular expression pattern
— Supports Perl-style regular expressions
* \w+ \s [*a-z0-9]" etc.
— Need to use double backslash (\\) in strings to

get a single backslash (\)

 \\s translates to \s set to the regular expression
engine




 java.util.regex.Matcher
— Create a matcher out of a pattern and some text
— The matcher can search for a pattern in the text

— find() searches for an occurrence of the pattern
« Searches from a point after the previous find()

— group() returns the matched text from the previous
find

— Matcher support lots of different ways to look and
iterate with the pattern on the text
» Refer to the APl documentation for details



STANFORD UNIVERSILY

Regular Expression Example

import java.util.regex.*;

I/l Extract email addrs from text

I/l email addr is @ surrounded by \w.-_

I/l We need to use double \\ in the " string, to put a single \ in the pattern

Il (\w represents a ‘'word' character: a-zA-Z and _

String text = "blah blah, nick@cs, binky binky foo@bar.com; spam_me@foo.edu ";

String re = "[\w\\.\\-][*\\@[\\w\\.\\-]+";
Pattern pattern = Pattern.compile(re);

Il Create a matcher on the string
Matcher matcher = pattern.matcher(text);

Il find() will iterate through matches in the text
while (matcher.find()) {
Il group() returns the most recently matched text
System.out.printin("email:" + matcher.group() );



STANFORD UNIVERSILY

Regular Expression Example

I*
Output
email:nick@cs
email:foo@bar.com
email:spam_me@foo.edu

*1




STANFORD UNIVERSILY

« Used to extract the strings separated by a given
pattern

Il Use split() to extract parts of a string

String text2 = "Hello, what's with all the punctuation, and stuff here; | want just
the words.";

Il The pattern matches one or more adjacent whitespace or punctuation chars
Pattern splitter = Pattern.compile("[\\s,.;]+");

Il Split() uses the pattern as a separator, returns all the other strings:
I/l "Hello" "what's" "with" ...
String[] words = splitter.split(text2);
for (int i=0; i<words.length; i++) {
System.out.printin(words|i]);

}



STANFORD UNIVERSILY

Static Pattern.match()

o Static convenience method

— Builds a pattern and matcher, runs the matches()
method against the given text

— Returns true is the entire text matches the pattern

— Less efficient

« Pattern and matcher are instantiated, used once and
discarded

— Useful for simple cases

boolean found = Pattern.matches("\\w+\\s\\w+", "hello there");
System.out.printin(found); Il true



STANFORD UNIVERSILY

@, M Assertions

 Assert

— Added in Java 1.4

— Use assertions to sprinkle code with tests of what
should be true.
» The assertion throws an AssertionError exception if the test
is false.
— Helps document what you think is going on, say, at
the top of each loop iteration
 help find bugs more quickly in this code, and in client code
that calls this code.
— The assert code may be deleted by the JVM at
runtime, so do not put code that must execute in the
assert. Assert should do read-only tests.



STANFORD UNIVERSILY

Assertions continued

o Assert

— To compile with asserts, use the '-source 1.4' to javac.

* If you compile this way, the code will only work on a 1.4 or
later JVM.

« By default at runtime, assert is not enabled -- they are NOPs

— Turn asserts on with the -enableassertions switch to
the 'java' command
 (-ea is the shorthand)
 java -ea // turns on asserts for the whole program
 java -ea MyClass // turns on asserts for just that class

* java -ea -da MyClass // turn on asserts, but turn them off for
MyClass



STANFORD UNIVERSILY

Assert Example

public static void main(String[] args) {
int len=1;

I/l assert a condition that should be true
assert len<100;

/I Can include a : <string> after the assert that goes in the error printout
assert len<1 : "len=" + len;

I*
Output:
Exception in thread "main" java.lang.AssertionError: len=1

at Assert.main(Advanced.java:80)
*/

I/l Suppose your code calls foo(), and it returns 0 on success
I/l Never do this:

Il assert foo()==0;

Il Do it this way, so it still works if the assert is disabled

Il int result = foo();

Il assert result==0;



« XEdit

— Tool to do search and replace on XML files

— Your job:

* Traverse the DOM to do search and replace

— Can use regexs if you want or just use String methods
such as indexOf()

— Simple assignment — 2-5 hours

e Due

— Before midnight, Wednesday, August 13,
2003



STANFORD UNIVERSILY

Java Implementation and Performance (Handout #31)

« Java Compiler Structure
— .java files contain source code
— Compiled into .class files which contain bytecode

* Bytecode
— A compiled class stored in a .class file or a .jar file
— Represent a computation in a portable way
 As a PDF is to an image
 Java Virtual machine

— Abstract stack machine
« Bytecode is written to run on the JVM

— Program that loads and runs the bytecode
* Interprets the bytecode to “run” the program

— Runs code with various robustness and safety checks



STANFORD UNIVERSILY

Xamm. N Verifier and Bytecode

 Verifier

— Part of the VM that checks that bytecode is well
formed
» Makes Java virus proof

— A malicious person can write invalid bytecode, but it
will be detected by the Verifier

» Usually no verifier errors since the compiler produces
“correct” bytecode

« Still possible to write bytecode by hand

* Bytecode example
— javap —c will print the actual bytecode for a class



STANFORD UNIVERSILY

Bytecode Primer

* The byte code executes against a stack machine
-- adding 1 + 2 like this

iload 1; // push a 1 onto the stack
iload 2; // push a 2 onto the stack
add; // add the two numbers on the stack

// leaving the answer on the stack
* "load" means push a value onto the stack

» aload 0 = push address of slot 0 -- slot O is the "this"
pointer

* iload_1 = push an int from slot 1 (a parameter)
« getfield -- using the pointer on the stack, load an ivar
 putfield -- as above, but store to the ivar



Vﬁ‘ STANFORD UNIVERSITY
LS
Student Bytecode example

T
s
: fﬂh . ___--_:?h ._i_:..:_:.
i,
i ! v [

nick% javap -c Student
Compiled from Student.java
public class Student extends java.lang.Object {
protected int units;
public static final int MAX_UNITS;
public static final int DEFAULT_UNITS;
public Student(int);
public Student();
public int getUnits();
public void setUnits(int);
public int getStress();
public boolean dropClass(int);
public static void main(java.lang.String[]);

}

<snip>



STANFORD UNIVERSILY

Method int getUnits()
0 aload 0
1 getfield #20 <Field int units>
4 ireturn
Method void setUnits(int)
0 iload_1
1iflt 10
4 iload_1
5 bipush 20
7 if_icmple 11
10 return
11 aload_0
12 iload_1
13 putfield #20 <Field int units>
16 return
Method int getStress()
0 aload 0
1 getfield #20 <Field int units>
4 bipush 10
6 imul
7 ireturn



e Just-In-Time Compiler
— JVM may compile the bytecode into native code at runtime
« Maintains robustness/safety checks (slow startup)

* HotSpot

— Does a sophisticated runtime optimization for which part to
compile

— Sometimes does a better job than native C++ code since it has
more information about the running program

 Future

— May cache the compiled version to speed up class loading

— Bytecode is a distribution format
« Similar to PDF




STANFORD UNIVERSILY

Optimization Quotes

* Rules of Optimization
— Rule 1: Don’t do it.

— Rule 2 (for experts only): Don’t do it yet.
« M.A. Jackson

* “More computing sins are commited in the name of
efficiency (without necessariy achieving it) that for any
other reason — including blind stupidity.” — W.A. Wulf

— Y2K bug! — saving 2 bytes!

« We should forget about small efficiencies, say about
97% of the time: premature optimization is the root of all
evil.” — Donald Knuth



* Reality
— Hard to predict where the bottlenecks are

— Easier to use tools to measure the bottlenecks once
the code is written

» Write the code you want to be correct and finished first, then
worry about optimization

* “Premature Optimization” = evil
— Classic advice from Don Knuth
— Write the code to be straightforward and correct first

— May already be fast enough!
* If not, measure the bottleneck

* Focus optimization on bottleneck using Algorithms and
Language optimizations



 Data Structures

— Have a profound influence on performance
 Early design helps once

— Choice of datastructure can constrain what
algorithms you can use

* Proportionality to Caller

— Foo() takes 1 ms. Bar() calls foo.
« |f Bar() takes 20 ms, it's not worth looking at Foo()
« |f Bar() takes 2ms, then we should look at Foo()



STANFORD UNIVERSILY

@ > Optimization 101

 1-1 User Event Rule

— If something happened a fixed number of
times (1-3) for each user event, then it's not

worth looking at
— If something happens 100s of times for each
user even then it is worth looking at

— User events are very slow from the CPU’s
perspective




* 1-10-100 Rule

— Assignment — 1 unit of time
— Method call — 10 units of time

— New Object or Array — 100 units of time
* Rule of thumb only. Not scientific.
* Hard to determine the actual cost

* Also sometimes known as the 1-10-1000 rule,
but modern GC is much more efficient

— Bad idea to try and maintain your own free list. The
GC knows best.



* int getWidth() vs. Dimension getSize()
— getSize() requires a heap allocated object

— getWidth() and getHeight() may just be inlined
to move the two ints right into the local
variables of the caller code

» With Hotspot, shortlived object (like
Dimension) are less of a concern...




 Locals are faster than Instance variables

— Local (stack) variables faster than any member
variables of objects

» Easier for the optimizer to work with

* Inside loops, pull needed values into local
variables
— 1. Slow: message send
* ... 1 <piece.getWidth()
— 2. Medium: instance variable
e ... 1 <plece.width

— 3. Fast: local variable

« ... final int width = piece.getWidth
e ... 1 <width
— This is faster since the JIT can put the value in a native register



* Avoid Synchronized (Vector)

— Synchronized methods have a cost
associated with them

 This is significantly improved in Java 1.3

— Can have synchronized and unsynchronized
methods and switch based on some flag

— Use “immutable” objects to finesse
synchronization problems

— Vector class is sychronized for everything
» Use ArrayList instead!
* |[f you can use a regular array, even better



STANFORD UNIVERSILY

K@, M Java Optimization Tip #5
« StringBuffer

— Use StringBuffer for multiple append operations
— Convert to String only when done

« Automatic case

— Compiler optimizes the case of several string +'d together on
one line

— String s = “a string” + foo.toString() + “more”

 No:
String record,; Il ivar

void transaction(String id) {
record =record + " " + id; Il NO, chews through memory

}

* Yes:
StringBuffer record,;
void transaction(String id) {
record.append(™ ");
record.append(id); + id;
}



« Don’t Parse

— Obvious but slow strategy — read in XML,
ASCII, etc.

— Build a big data structure

* Faster approach
— Read into memory, but keep as characters
— Search/Parse when needed
— Or Parse only subparts



Vﬁ‘ STANFORD UNIVERSITY

@ N Java Optimization Tip #7

* Avoid weird code
— JVM will optimize most stadard coding styles
« So write code in the most obvious, common way

— Weird code is often the result of an attempt at
optimization!

* Let the JIT/Hotspot do it’s thing!




* Threading / GUI Threading

— Use separate thread to ensure the GUI is
snappy
* Pros

— Makes best use of parallel hardware

« Cons
— Software is harder to write
— Bugs can be subtle
— Locking/Unlocking costs



* Inlining Methods/Classes
— JVM optimizers and HotSpot use aggressive
inlining
» Pasting called code into the caller code

— final keyword
 for a class means it will not be subclassed

* for a method means it will not be overridden

— Use final keyword to help the optimizer do
more inlining



STANFORD UNIVERSILY

@ M Java Optimization Tip #9 cont.

Non-Inlined Inlined

A() | A() {

— B()




STANFORD UNIVERSILY

L@ M Java Optimization Tip #9 cont.

» Advantages of inlining
— Values are passed from A() to B() to C()

 After inlining, the values can just stay in registers
* Reduced number of load/saves

— Propogation of analysis

« Having code inlined can often lead to better
optimizations since the compiler can see values
from start to finish




* Think about memory traffic
— Old: CPU bound

— New: Memory bound
» CPU operations are cheaper and faster

* Once data is in the cache it is cheaper to work with
— Reduce the roundtrips to memory, disk, network

— Linked List vs. Chunked List

* Linked List: Read a node, then fetch the next node

» Chunked List: Each element contains a small array of
elements
— Makes better use of cache lines/memory pages
— ... some of this is very low level! ©



STANFORD UNIVERSILY

Summary!

« Today
— SAX XML Parsing
« XMLDotReader example

— Advanced Java
* Regular Expressions
» Assert

— HW4 — XEdit
— Java Implementation and Performance
« Bytecode
» Optimization Techniques
* Assigned Work Reminder
— HW 3a: ThreadBank

— HW 3b: LinkTester
» Both due before midnight on Wednesday, August 6t", 2003

— HW 4: XEdit
* Due before midnight on Wednesday, August 13, 2003



	CS193J: Programming in JavaWinter Quarter 2003Lecture 13SAX XML Parsing, HW4, Advanced Java
	Handouts
	Guest Lecture Reminder
	Recap
	Today
	SAX XML Parsing (Handout #28)
	Advanced Java (Handout #29)
	Regular Expressions
	Pattern
	Matcher
	Regular Expression Example
	Regular Expression Example
	pattern.split()
	Static Pattern.match()
	Assertions
	Assertions continued
	Assert Example
	HW 4: XEdit (Handout #30)
	Java Implementation and Performance (Handout #31)
	Verifier and Bytecode
	Bytecode Primer
	Student Bytecode example
	Student Bytecode Example
	JITs and Hotspot
	Optimization Quotes
	Optimization 101
	Optimization 101
	Optimization 101
	Java Optimization Tip #1
	Java Optimization Tip #2
	Java Optimization Tip #3
	Java Optimization Tip #4
	Java Optimization Tip #5
	Java Optimization Tip #6
	Java Optimization Tip #7
	Java Optimization Tip #8
	Java Optimization Tip #9
	Java Optimization Tip #9 cont.
	Java Optimization Tip #9 cont.
	Java Optimization Tip #10
	Summary!

